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A Theory of Macromolecular Chemotaxis
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ABSTRACT: A macromolecule in a gradient of a cosolute that is preferentially (relative
to the solvent) either attracted to or excluded from the domain of the macromolecule
should experience a thermodynamic force and move, respectively, up or down the
gradient. A theory of chemotactic forces arising from such preferential interactions,
especially short-range ligand binding and excluded volume interactions, is developed via
an extension of Kirkwood−Buff theory. The ligand binding result is confirmed for both
non-ionic and ionic cosolutes by standard solution thermodynamics. The effect of
increasing the electrolyte concentration to diminish the electrostatic free energy of a
charged macromolecule is also treated formally via an electrostatic macromolecule−
electrolyte preferential interaction coefficient. For short-range interactions, the induced
chemotactic velocity is attributed entirely to tangential tractions at the interface between the macromolecule and its surrounding
solution. The velocity of a spherical macromolecule driven by such tractions is derived by a hydrodynamic calculation for steady-
state creepy flow with a partial slip boundary condition. Qualitative comparisons of theoretical predictions with experimental
observations of Zheng and Pollack pertaining to charged microspheres near the surfaces of non-ionic gels suggest that the
reported exclusion zones are due to chemotaxis induced by gradients of base (NaOH) (or acid (HCl)) and salt. With a single
adjustable parameter, namely, the ratio of slip length to area per surface carboxyl (or amidine) group, this theory yields nearly
quantitative agreement with many observations. The estimated slip length for the microspheres is comparable to that obtained
for bovine serum albumen by fitting the chemotactic theory to two reported cross-diffusion coefficients. When a solution with a
gradient of NaOH is placed in contact with a smooth glass wall, chemotactic surface tractions are predicted to cause convection
of the solution toward the acidic end of the gradient, as observed in preliminary experiments.

■ INTRODUCTION

Chemotaxis typically refers to the response of a motile
biological organism to a concentration gradient of a particular
solute. Net translation of the organism toward either higher or
lower concentration of that solute exemplifies chemotaxis. Can
non-living objects, including single molecules, also exhibit
chemotaxis? It is intuitively expected that a molecule suspended
in a liquid with a non-equilibrium gradient of any intensive
thermodynamic variable will experience a non-vanishing
thermodynamic force and move preferentially either up or
down that gradient. Thus, it is expected that a molecule
suspended at constant T and P in a chemical potential gradient
of another solute species will experience a force and move one
way or the other. The possibility of molecular chemotaxis was
first suggested under the name of cross-diffusion in 1932,1 and
measurements of cross-diffusion were reported as early as
1955.2,3 The history, experimental methods, selected exper-
imental results, and previous theoretical developments
pertaining to cross-diffusion were recently reviewed.4 Numer-
ous experiments have demonstrated unequivocally that a flux of
one solute component can be induced by a gradient of another,
which is the essence of cross-diffusion/molecular chemotaxis
(cf. ref 4 and citations therein). Experiments to measure cross-
diffusion coefficients (i.e., off-diagonal elements of the matrix of
mutual translational diffusion coefficients of the various
electroneutral solute components) have reached a fairly
advanced stage, as demonstrated by the determination of all

nine elements of the 3 × 3 mutual diffusion matrices of
particular three-component solutes.5,6 However, a satisfactory
theory to predict a given off-diagonal matrix element (Dij),
which represents the induced flux or particle current density
(concentration times mean velocity) of the ith electroneutral
solute component per unit gradient of the concentration of the
jth electroneutral component, is largely lacking except for dilute
solutions of low-valent electrolytes1,8−11 and solutions of
alkanes of different sizes.12 Especially for macromolecules,
which have very large surface areas, either net exclusion or net
binding of a cosolute relative to the solvent can significantly
modulate the macromolecular chemical potential.7 In that
event, a gradient of such a solute will generate a chemotactic/
cross-diffusion force on the macromolecule relative to the fluid
in which it is suspended. Chemotaxis of a colloidal particle
induced by a gradient of low molecular weight cosolute has also
been called “diffusiophoresis”,13,14 and both theoretical and
experimental investigations have appeared under that
name.15−20 Diffusiophoresis is tantamount to induced flow of
a fluid adjacent to a solid surface (of the macromolecule),
whenever the fluid contains a gradient of a solute that interacts
preferentially (relative to solvent) with that surface.20
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Potential applications of molecular chemotaxis in micro-
fluidics were recently demonstrated by the use of transverse salt
gradients to either augment or oppose diffusive transport of
negatively charged fluorescein from one flow stream to
another,21 or to narrow (focus) or spread (defocus) the lateral
distribution of colloids in a longitudinally flowing stream by up
to ∼50 μm over a flow distance of ∼0.84 mm.22 In neither the
cross-diffusion nor diffusiophoresis literature have chemotactic
forces arising from interactions of ultrashort range, such as
hard-core exclusion forces or, especially, chemical binding
forces, been treated previously. Before reviewing previous cross-
diffusion and diffusiophoresis theories and presenting the
relevant new theory, it is important to describe certain topical
phenomena, some of which are most likely previously
unrecognized manifestations of macromolecular chemotaxis.
These provide both motivation for the present study and
experimental tests of the resulting theory.
Exclusion Zones and the Ordered Water Hypothesis.

In a series of publications,23−32 Pollack and co-workers
reported numerous observations pertaining to the long-range
effects of various surfaces on their surrounding solutions.
Surfaces exhibiting long-range effects included various non-
ionic and ionic hydrogels, ionomeric Nafion membranes, ion
exchange gel beads, muscle tissues, and even a carboxylated
monolayer of an alkyl thiol absorbed on gold, although its
exclusion zone was less distinct and much slower to develop.
However, other surfaces, such as (fiber optic) glass, stainless
steel, copper, silver, and gold, showed no long-range effects. A
common feature of the exclusion-zone-forming materials is
their ability to absorb bases (or acids) from the solution either
by simple diffusion in the case of neutral gels, by electro-
chemical diffusion and ion exchange in the case of ionic gels, or
by simple titration in the case of carboxylated alkylthiols
absorbed on gold. The main long-range effect was the
formation of exclusion zones. When a suitable hydrophilic
surface was placed in contact with a solution that initially
contained a homogeneous distribution of positively or
negatively charged microspheres with diameters in the range
0.45−4.0 μm, which were plainly visible at 20× magnification, it
was found in most (but not all) cases that the microspheres
migrated away from that surface with an initial speed of ∼1.0 to
a few μm/s and slowed to an apparent standstill after all of the
spheres were excluded from a zone of ∼50 to ∼600 μm,
depending upon the surface and other conditions.23−31 These
exclusion zones were regarded as equilibrium phenomena and
were attributed to the formation of an extensive (∼200 μm)
zone of “structured water”,23 more precisely a “physically
distinct and less mobile phase of water that can coexist
indefinitely with the contiguous solute-containing phase”.24,30

This “long-range water ordering”32 was suggested to involve
partial alignment of water molecules to form a “liquid
crystalline structure”25 that was further suggested to be
“initiated through hydrogen bonding with the nucleating
surface”.24,25 From experiments with fluorescein-labeled bovine
serum albumen (BSA), fluorescein itself, and 6-methoxy-N-(3-
sulfopropyl) quinolinium dye, the ordered water phase was
inferred to exclude impurities of all sizes, including BSA and
dye molecules, as well as charged microspheres.24,25

In this paper, the experimental data, specifically the
microscopic observations of Pollack and co-workers,23−31 are
accepted at face value. However, the interpretations proposed
by the Pollack group, and certain inferences drawn therefrom,
not only fail to account for significant data from their own lab

but conflict with many other well-established observations from
other laboratories. Relevant problems with the proposed
interpretations of the exclusion zone in terms of long-range
ordered water include the following.
(1) It was never conclusively established whether the

exclusion zone is an equilibrium phenomenon or instead a
long-lived non-equilibrium transient effect. The reported data
typically do not extend more than 20 min after the initial
contact between the hydrophilic surface and the solution. It was
stated in the earliest paper23 that exclusion zones could persist
“up to a day” and “sometimes more than a week”. However, it
was reported in a later paper22 that exclusion zones appeared
(in the presence of 0.01 M imidazole buffer) around the acid
(H+) form of a cation exchange gel bead and around the basic
(OH−) form of an anion exchange gel bead but did not form
around either kind of bead af ter its exchange capacity was
exhausted (e.g., by exchange of cations such as imidazolium
(ImH+) for H+ in the former bead or by exchange of anions
such as Cl− or HCO3

− for OH− in the latter). This observation
suggests that exclusion zones around these beads are not
actually equilibrium states but arise in part as a consequence of
the process of ion exchange between the solution and the ionic
gel, and are no longer observed after that process has reached
equilibrium. In another paper,26 it was reported that anion
exchange beads (with positive intrinsic charges) in the absence
of buffer became exhausted after ∼2 weeks (probably due to
exchange of adventitious HCO3

− in the solution for OH− in the
gel), which sets the time-scale for equilibration of ion exchange
in the case of these rather small (∼600 μm diameter) ionic gels.
For larger ionic gels, this process could take much longer. Thus,
non-equilibrium conditions could easily prevail for “more than
a week”.
(2) The possibility that long-range chemical gradients, such

as a pH gradient, might be responsible for the exclusion zone
was considered and rejected for three reasons,23 all of which
now appear to be invalid. (i) It was stated that such a pH
gradient (or gradient of ln cNaOH or ln cHCl) would generate an
internal electric field and electrostatic potential difference
between the gel and solution, similar to a liquid junction
potential, due to the different diffusion coefficients of the
positive and negative ions. This much is true. However, it was
then asserted that liquid junction potentials extend only over
very small distances (presumably much less than ∼200 μm).
This statement is simply incorrect for unstirred solutions, such
as those studied by Pollack and co-workers. Indeed, the
subsequent measurement of both long-range pH gradients29,31

and electrochemical potentials26,27,31 that decline over distances
of ∼200 μm from the surfaces of ionic gels and ionomers could
be taken as an indication that such liquid-junction potentials
actually do extend over a distance of ∼200 μm. (ii) It was
asserted that any such gradient would be expected to diminish
with time, “yet the exclusion zone persisted easily for hours”.
However, if H+ or OH− ions are either released from or
absorbed by the gel due to ongoing ion exchange, as occurs for
charged gels and ionomers, then the temporal duration of the
pH gradient may be considerably longer than “hours”, as
already noted. In any case, the time required for an already
formed 200 μm exclusion zone to disappear in the absence of
any exclusion or other forces is the time required for
microspheres of radius R = 1.0 μm to diffuse to a root-mean-
squared displacement, d ∼ 200 μm, which is given by t = d2/
2(kT/6πηR) = 93 170 s ≅ 25.9 h. Thus, if chemotactic forces
suffice to build an exclusion zone at early times, then that could
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persist for many hours regardless of how quickly the
chemotactic forces decline. (iii) It was stated that the “local
translation velocity would be expected to be proportional to the
local pH gradient, but Figure 11 (of ref 23) shows that (the)
velocity (at a given time after contact of the solution with the
gel) could be independent of distance from the gel surface” or
at least surprisingly insensitive to distance from that surface,
even for an initial distance as great as 250 μm. This remark was
intended to illuminate a presumed contradiction. However, as
will be shown, the theoretical chemotactic trajectories of
carboxylated microspheres in a gradient of ln cNaOH, which
evolves via diffusion from an initial step function at t = 0, are
remarkably similar to the corresponding experimental trajecto-
ries for various starting positions from 0 to 240 μm, and their
net displacements at a given time are likewise surprisingly
insensitive to their initial distances from the gel surface. Hence,
there is no contradiction, and no reason to reject the possibility
that molecular chemotaxis of the microspheres in a pH gradient
is responsible for the formation of exclusion zones.
(3) The exclusion phenomenon depends strongly on the pH

of the microsphere suspension. For carboxylated microspheres
around non-ionic poly(vinyl alcohol) (PVA) gels, the size of
the exclusion zone declines to zero, as the pH of the alkaline
microsphere suspension is decreased to match the pH (5.7) of
the gel.23 This was attributed to the loss of microsphere
charge.23 However, the midpoint of the carboxylate micro-
sphere titration curve is expected to lie between 5.5 and 6.0, so
the carboxylated microspheres should still retain nearly half
their charge at pH 5.7. When the same PVA gels interact with
amidinated microspheres, the size of the exclusion zone also
declines to zero, as the pH of the acidic microsphere
suspension is increased to pH 5.7. The pKd of free amidinium
is ∼12.4, so the amidinated microspheres should be effectively
fully charged at all pH ≲ 10.0. Thus, the complete absence of
exclusion at pH 5.7 cannot be attributed to any significant loss
of charge of the amidinated spheres, and seems unlikely to be
caused by the partial loss of charge of the carboxylated
microspheres. However, it could be attributed to the absence of
any pH gradient, when the pH’s of the gel and solution match.
(4) The proposed exclusion of proteins from the surfaces of

hydrophilic gels and biological tissues would prevent
proteolytic enzymes, such as trypsin, pepsin, chymotrypsin,
and collagenase, from attacking solid or gel supramolecular
substrates, contrary to numerous observations. In fact, gelatin
gel spheres are both permeable to, and readily hydrolyzed by,
trypsin.33,34 Likewise, the actions of lysozymes and cellulases on
cell walls and of lipases on lipid membranes are obviously not
prevented by exclusion of such enzymes from those surfaces.
Similarly, infection of cells by viruses of various sizes and shapes
is not prevented by exclusion of such species. In this light,
exclusion appears to be considerably less than a universal
phenomenon.
(5) If the proposed ordered structure of water in the

exclusion zone is assumed to prevail inside the gel, as would be
inferred from Pollack’s nucleation idea, then it should exclude
solutes and its viscosity should differ substantially from the bulk
value. Concentrations and diffusion coefficients of many
species, including NaCl, KCl, urea, glucose, sucrose, BSA, and
hemoglobin, in 1.5% agar gels were measured subsequent to
immersion of solute-free gels in aqueous solutions of each.35

After applying corrections to account for the fraction of the
total volume (ϕ < 1.0) that is free to dissolve the solute, and for
the obstructive effect of the gel (modeled as randomly oriented

rods), the diffusion coefficients and equilibrium concentrations
obtained were all within experimental error (∼2%) of those in
bulk. For the salts, urea, and sugars, the total correction
amounted to only ∼2.0−3.3%. These results indicate that
nearly all of the water in the gel is accessible to such solutes and
that any difference in diffusion coefficient, or implied viscosity,
between the water accessible to solute in the gel and that in the
pure liquid is ≲2% of the latter value. In regard to viscosity,
solute-accessible water in the gel, which is very nearly all the
water therein, is evidently practically indistinguishable from
bulk water.
(6) Translational and rotational diffusion coefficients (DT

and DR, respectively) of 41 different soluble proteins have been
calculated to high accuracy from their reported crystal
structures plus a “solvation” layer of uniform thickness, 1.1 Å,
which is considerably less than that of a water monolayer (∼3.0
Å).36 Agreement of the results with reported experimental
values is well within the experimental errors in every case.
Clearly, the outward extent of any ordered water at protein
surfaces must be rather slight. Also, dynamic light scattering
measurements of DT for both lipid vesicles and charged
polystyrene latex spheres yield hydrodynamic radii in the range
∼10−200 nm that are in good agreement with the
corresponding radii measured by electron microscopy and
total intensity light scattering (unpublished results in the lab of
J. M. Schurr). There is no indication of any ordered boundary
water extending far into the surrounding solution.
In view of the aforementioned problems with the long-range

ordered water hypothesis, an investigation of alternative
explanations for the observed exclusion zones is warranted. In
this study, we examine theoretically the possible role of
macromolecular chemotaxis in the phenomena of exclusion or
attraction of microspheres by non-ionic (neutral) hydrophilic
gels. The more complex exclusion/attraction phenomena
exhibited by ionic (charged) hydrophilic gels, which exhibit
strong Donnan effects and undergo (counter) ion exchange, are
analyzed in terms of long-range pH and/or salt gradients in a
subsequent paper (II, 10.1021/jp302589y).37 The reported
long-range “electric” potentials are likewise ascribed to long-
range pH and salt gradients in paper II (10.1021/jp302589y).
Other properties, including spontaneous infrared emission
images, and NMR T2 images and pulsed-gradient spin−echo
water-diffusion experiments, are also analyzed in paper II
(10.1021/jp302589y), where problems concerning the inter-
pretations of those experimental data in terms of ordered water
are noted, and alternative interpretations that do not involve
ordered water are proposed in each case.

Theories of Mutual Diffusion in Multicomponent
Systems. Conventionally, cross-diffusion theory has focused
on the flux, or current density, of the ith electroneutral
component arising from the concentration gradient of the jth
electroneutral component, which is denoted by ji = −Dij∇cj. In
this study, we are interested primarily in the mean drift velocity
of the ith electroneutral component, which in cross-diffusion
theory would be given by ui = (ji/ci) = −(Dij/ci)∇cj. This
relation connects the chemotactic velocity to a relevant cross-
diffusion coefficient. Of course, the simultaneous gradients of
any other electroneutral components contribute in an additive
fashion to the total ji and ui = ji/ci.
Previous conventional and dynamic light scattering mutual

diffusion theories for multicomponent electrolyte solutions are
reviewed in section S1 of the Supporting Information. Such
theories, which do not account fully for either the distributions
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of small ions or the perturbed fluid flow around the individual
ions, work well for dilute univalent ions but become
quantitatively increasingly erroneous with increasing macroion
charge and size.
In cross-diffusion studies of highly charged bovine serum

albumin (BSA) (component 3) in a 0.2 M two-component
phosphate (pH 2.2) or two-component citrate (pH 4.5) buffer,
the predicted D31 and D32 of the electroneutral component
matrix were found to exceed the measured values by an order of
magnitude for the citrate buffer and by several-fold with also an
incorrect sign of D32 for the phosphate buffer.38 Such large
errors suggest that either the direct (non-hydrodynamic) forces
on the polyions or their mobilities are much smaller than
predicted by the standard cross-diffusion theories.
A theoretical prescription to compute elements of the mutual

diffusion coefficient matrix for dilute spherical ionic species is
given by eq 90 of ref 39 in the q → 0 limit after projecting out
the charged mode. This projection can be accomplished in a
manner analogous to that used for eq 94 of that same article.
Evaluation of these matrix elements requires as essential input
all radial distribution functions and two-body hydrodynamic
interaction tensors for spherical species of possibly very
different charge and size. Calculation of the radial distribution
functions of dilute solutions of highly charged polyions and
their counterions and co-ions remains a challenging problem.
Moreover, this theory applies only to circumstances wherein
the direct (non-hydrodynamic) forces between spherical
particles are center to center (normal to the surface) and
have sufficiently great range. In theory, the zero velocity of
approach at contact condition (from lubrication theory with
stick boundary conditions)40−45 greatly reduces the effects of
short-range direct interactions and, in the case of mutual
diffusion of hard spheres with hydrodynamic interactions,
completely removes all effects of direct intersphere interactions
on the mutual translational diffusion coefficient, except for
backflow corrections.40 Certain chemotactic forces exerted on a
spherical macromolecule, such as those arising from cosolute
exclusion or the binding of small cosolutes, have extremely
short range, and a gradient of such a cosolute gives rise in a
statistical sense to tangential (as well as normal) equal but
oppositely directed forces on the macromolecular surface and
its adjacent solution. The theory in ref 39 does not apply to
such forces, which are treated by an entirely different approach
in this study.
The effects of different partial molecular volumes in

otherwise ideal solutions on cross-diffusion have been treated
with some success.12 While the different molecular volumes of
solutes and solvents were taken into account in an approximate
way, no account was taken of the exclusion of a cosolute
relative to solvent at the surface of a solute molecule.7 Cosolute
exclusion can significantly increase the standard state chemical
potential of a macromolecule,7 so a gradient of excluded
osmolyte can generate a significant force, as will be seen.
Theories of Diffusiophoresis. Theories of diffusiophoresis

of spherical macromolecules in gradients of both non-
electrolytes and electrolytes have been developed.15−18,20 The
diffusiophoretic theory for electrolytes is briefly reviewed and
critiqued in section S2 of the Supporting Information. Due to
the stick boundary condition used, the range of the macro-
molecule−cosolute interaction must significantly exceed the
thickness of the first water layer above the colloid surface in
order to predict a non-vanishing velocity. Consequently, these
theories do not apply to short-range excluded-volume or

cosolute-binding interactions, which are treated here by an
alternative route using a partial slip boundary condition.
Diffusiophoretic theories for electrolyte gradients are not
based upon thermodynamic arguments but instead upon the
standard electrokinetic equations of electrophoresis theory, at
least one of which is not entirely correct, as noted in section S2
of the Supporting Information. More significantly, no account
is taken of the effect of electrolyte on the ionization equilibrium
and the effect of that upon the macromolecular chemical
potential and its gradient. The diffusiophoretic theories apply
only to smooth spherical surfaces and predict velocities that
depend only upon the electrostatic potential at that presumed
surface of shear. However, the surfaces of real macromolecules
and colloids are typically quite rough with much of the surface
lying inside the surface of shear. Those charged groups inside
the surface of shear still interact with salt, which may
significantly lower the electrostatic free energy of the
macromolecule, and contribute significantly to its chemical
potential gradient, when it resides in a gradient of salt
concentration. Such contributions to the driving force are
entirely absent in the diffusiophoretic theories. In addition, the
use of a pure stick boundary condition may be inappropriate in
light of recent results indicating a small but finite slip on glass
surfaces. Because of their different boundary conditions at the
solid−fluid interface, the diffusiophoretic theory and the
present theory are not readily compared.
In general, the diffusiophoretic theory yields two contribu-

tions: (1) a chemiphoretic theory that is presumably an
approximate electrokinetic theory analogue of the present
electrolyte theory after removing the contribution of electrolyte
to alter the ionization constant of the acid (or base) groups on
a macromolecule and (2) the electrophoretic contribution that
arises from the internal electric field that accompanies the
diffusion of neutral salt, when the cations and anions have
different friction factors. Although an obvious choice for a
motive force at first glance, no such contribution is considered
here for reasons discussed in section S2 of the Supporting
Information, which suggest that the internal electric field acting
upon the macroion and its ion atmosphere may be significantly
less than that associated with the neutral salt gradient.

Detailed Plan of the Paper. Extended Kirkwood−Buff
(KB) theory is introduced and related to the thermodynamics
of dilute macromolecular solutions that contain a coso-
lute.7,46−53 The slope of the standard state chemical potential
of the macromolecule with respect to the chemical potential of
the cosolute is expressed in terms of KB integrals. This slope is
evaluated in terms of (i) hard-core exclusion of the cosolute
relative to water and (ii) cosolute−solvent exchange at sites on
or near the macromolecular surface. The thermodynamic force
is expressed in terms of this slope, which is just the negative of
the non-electrostatic macromolecule−cosolute preferential inter-
action coefficient. The simple result for cosolute binding is
confirmed by conventional solution thermodynamics for a non-
ionic cosolute in section S3 of the Supporting Information, and
for an ionized electroneutral cosolute, NaOH, in Appendix B.
The effect of electrolyte on the binding constant and
electrostatic free energy of the macromolecule is expressed in
terms of an electrostatic macromolecule−electrolyte preferential
interaction coefficient. Thermodynamic forces arising from base
or acid and salt gradients are expressed simply in terms of
relevant parameters. The chemotactic velocity is calculated by
solving the linearized Navier−Stokes equation for an
incompressible viscous fluid subject to balanced surface
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tractions (forces per unit area) and a partial slip boundary
condition. The trajectories of carboxylated microspheres in a
temporally evolving gradient of rather dilute base, typical of that
in the experiments of Pollack and co-workers, are reckoned and
compared with the experimental observations. A detailed
comparison between predictions of the chemotactic theory
and various results from the Pollack lab shows that molecular
chemotaxis accounts qualitatively for practically all of the
reported observations pertaining to microsphere interactions
with non-ionic gels. With a single adjusted parameter, namely,
the ratio of the slip length to the area per carboxyl group, this
chemotactic theory accounts nearly quantitatively for many of
those same observations. With a plausible area per carboxyl
group, the estimated slip length of a microsphere resembles that
obtained for BSA (component 3) by fitting the chemotactic
theory to reported values of D31 and D32 in a two-component
pH 2.2 phosphate buffer. The circumstance wherein a solution
bearing a gradient of NaOH contacts a fixed surface, such as a
glass wall, which bears acidic silanol groups that bind (or have
bound) OH− ions, is also analyzed, and gradient-induced
convection of the liquid is predicted. Preliminary experiments
are briefly discussed. Finally, possible roles and uses of
molecular chemotaxis are noted.

■ THEORY

Results from K−B Theory. We consider solutions
containing a negligibly small volume fraction of macro-
molecules (component 2) plus a dilute small-molecule cosolute
(component 3) in a solvent (component 1), which is generally
water in this study. The cosolute may be preferentially either
accumulated at or excluded from the macromolecular surface.
All independent components are electroneutral, and initially are
taken to be non-ionic. Ionic components will be discussed
subsequently. Eventually, we shall treat the situation wherein
there is a non-equilibrium gradient of the concentration of 3,
but first we discuss relevant thermodynamic properties of two-
and three-component solutions at equilibrium. We use several
results from the theory originated by Kirkwood and Buff46 and
extended by Ben-Naim, Smith, and others.7,47−53

Thermodynamic Considerations. We shall usually treat
the limit of infinitely dilute macromolecules, c2 → 0. In this
case, the solution surrounding a macromolecule is effectively a
two-component solution of 1 and 3. For such a solution, the
variation of the chemical potential of 3 (μ3 J/molecule) with
increasing concentration of 3 (c3 molecules/m3) at constant T
and P is given by

μ∂ ∂ = + −kT c c G G(1/ )( / ln ) 1/(1 ( ))T P3 3 , 3 33 31 (1)

where Gij = ∫ Vd
3r(gij(r) − 1) = Gji is a Kirkwood−Buff integral

over a suitably large volume V and gij(r) = gji(r) is a pair
correlation function for the species i and j, as a function of the
distance (r) between the (arbitrarily chosen) central atoms of i
and j, and d3r = dx dy dz is a volume element. Equation 1 can
be obtained directly for a two-component solution46,49,53 and
also by treating a three-component system at constant T, P, and
c2 and taking the limit c2 → 0 (cf. eqs 42 and 45 of ref 53).
Although gij(r) depends upon the choice of central atom, Gij
does not. The derivation of eq 1 via grand ensemble fluctuation
theory applies to any choice of central atoms of the molecules
involved.7 The Gij all approach finite limiting values as c3
approaches zero. When c3 is sufficiently small that c3 (G33 −
G31) is negligible compared to 1.0, then (∂μ3/∂ ln c3)T,P = kT.

This relation is integrated over d ln c3 at constant T and P to
obtain the well-known dilute solution result

μ μ= + kT cln3 3
0

3 (2)

where μ3
0 is that part of the chemical potential that is

independent of c3, and is called the standard state chemical
potential. μ3

0 applies to a fictitious state wherein c3 = 1.0
molecules/m3, but the environment of each 3-molecule is that
of an infinitely dilute solution c3 → 0, which corresponds to
pure solvent in this case.
For a three-component solution of 1, 2, and 3, the variation

of the chemical potential of 2 (μ2) with increasing molality of 2
(m2) at constant molality of 3 (m3) is given by

μ∂ ∂ = + ·ΔkT m c(1/ )( / ln ) 1/(1 )T P m2 2 , , 23 (3)

where

Δ ≡ + − − + +G G G G A A c A c A/( )22 13 12 23 1 3 1 3 3 1 (4a)

= + + − −A c G G G G1 ( )1 1 11 23 12 13 (4b)

= + + − −A c G G G G1 ( )3 3 33 12 13 23 (4c)

Equation 3 is obtained from the last of eqs 28 of ref 53 after
interchanging the 3 and 2 indices, and eqs 4a−4c follow from
eqs 5 and 29 of that same paper. The quantities c1 and c3, the
KB integrals in eqs 4a−4c, and hence Δ all approach finite
limiting values, as c2 becomes small at constant m3. Hence, c2·Δ
becomes negligibly small compared to 1.0 in the limit of
sufficiently small c2. In that limit, eq 3 can be rewritten as

μ∂ ∂ =m kT( / ln )T P m2 2 , , 3 (5)

Integrating eq 5 over d lnm2 at constant T, P, and m3 yields the
dilute solution result

μ μ= ̃ + kT mln2 2
0

2 (6)

where μ̃2
0 pertains to a 1.0 m standard state, wherein each 2-

molecule experiences the environment of an infinitely dilute (in
regard to component 2) solution, which consists of 1 and 3
with molality m3. The molality, m2, can be expressed in terms of
c2 (molecules/m

3) by m2 = c2(55.6)V̅1/(NAϕ1) ≃ c2/((1000)
NAϕ1) mol/kg, where ϕ1 = 1 − (c2v2̅ + c3v3̅) = 1 − ϕ2 − ϕ3 is
the thermodynamic volume fraction of solvent, NA is
Avogadro’s number, v2̅ and v3̅ are the partial molecular volumes
of 2 and 3, respectively, and V̅1 = NAv1̅ ≅ 1.8 × 10−5 m3 mol−1

is the partial molar volume of 1 (i.e., water). Equation 6 can be
rewritten as

μ μ= + kT cln2 2
0

2 (7)

where μ2
0 = μ̃2

0 − kT ln[(1000)NAϕ1] and pertains to the
fictitious 1.0 molecules/m3 standard state, wherein each 2-
molecule has the environment of a solution that is infinitely
dilute in 2 (c2 → 0) but with the same m3 and m1 = 55.6 (mol/
kg) of the remaining solution. Again, μ2

0 is that part of the
macromolecular chemical potential that is independent of c2.
However, μ2

0 generally depends upon the composition of the
two-component solution of 1 and 3 that constitutes the
environment of each 2-molecule in its standard state. At
constant T and P, a two-component solution has only a single
independent chemical potential, which is here taken to be μ3.
The variation of μ2

0 with μ3 at constant T, P, and c2
∞ is given by

μ μΓ ≡ − ∂ ∂ = −∞ c G G(2) ( / ) ( )T P c3 2
0

3 , , 3 32 122 (8)

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp302587d | J. Phys. Chem. B 2013, 117, 7626−76527630



where c2
∞ denotes c2 → 0.7,50,53 The symbol Γ3(2) denotes a

(non-electrostatic) preferential interaction coefficient (PIC).7 It
has been shown via Kirkwood−Buff theory that

Γ = ∂ ∂ μ μm m(2) ( / )T3 3 2 , ,1 3 (9)

for any value of c2, including c2
∞ (cf. eqs 13 and 47 of ref 53).

Equations 8 and 9 in principle apply to any electroneutral
component 3, whether non-ionic or ionic, but the right-hand
side (rhs) of eq 8 is useful only in situations where g32(r) is
well-defined. This requires that an electrolyte ion, such as a co-
ion of the macroion, that uniquely represents the local
electrolyte concentration, must exist, which is always the case
in a three-component system, when all intrinisic charges on the
macroion have the same sign. Equation 9 provides a measure of
the net binding of cosolute 3 to, or the net exclusion of 3 from,
the domain of macromolecule 2. A positive value of Γ3(2) is
sometimes described as thermodynamic binding of cosolute,
and a negative value of Γ3(2) is typically characterized as
cosolute (or osmolyte) exclusion.
Evaluation of Γ3(2) in Terms of Molecular Properties.

A heuristic evaluation of the Γ3(2) for a non-ionic cosolute 3
was given in terms of a hard-core excluded-volume contribution
plus a contribution from cosolute−water exchange reactions at
sites accessible to the non-ionic cosolute near the macro-
molecular surface.7 The excluded volume contribution is simply

Γ = − Δc V(2)3
ex

3
ac

(10)

where ΔVac = V3
ex − V1

ex is the difference between the volume
excluded to cosolute centers and that excluded to water centers
by a macromolecule and is normally positive. The increase in μ2

0

due to this excluded volume effect, when the cosolute
concentration is raised from 0 to c3, is just Δμ20 = (∂μ2

0/
∂μ3)T,P,c2∞(∂μ3/∂c3)T,P(c3 − 0) = c3ΔVac(kT/c3)c3 = kTc3ΔVac =
ΠΔVac.
This is just the reversible work to expel the centers of

cosolute molecules at osmotic pressure, Π ≡ c3kT, from the
volume ΔVac. For any cosolute that is larger than water, this
work is positive, and acts to increase μ2

0 above its value in pure
water. When a macromolecule is added to a binary solution of
water plus cosolute, its hard-core excluded volume forces exert
two effects: (1) the volume of the solution is increased by the
macromolecular volume, v2̅, that is excluded to any part of a
water or cosolute molecule; (2) cosolute centers are excluded
from a region that is still accessible to water centers but which
was also accessible to cosolute centers before addition of the
macromolecule. The increase in chemical potential of the
macromolecule is associated with the latter demixing (osmotic
exclusion) effect. This simple interpretation is only valid when
the larger (more excluded) species 3 is dilute, in the sense that
its volume fraction is rather small.
The exchange reaction contribution is evaluated as follows.

We assume that each macromolecule (P) has M ≫ 1 identical
independent sites, at each of which the exchange reaction

ν· + ⇌ · +νP (H O) L P L H O2 2 (11)

can occur. The quantity, P·(H2O)ν, denotes a single site
containing ν ≅ v3̅/v1̅ water molecules, L denotes a free cosolute
(ligand) molecule, and P·L denotes the same site occupied by a
cosolute molecule. The equilibrium constant for an exchange
reaction at this site is

=
·

·

ν

ν
K

a
a

[P L]( )
[P (H O) ]

1

2 3 (12)

where a1 is the activity of water and a3 is that of the cosolute.
The fraction of sites occupied by the cosolute is

= ·
· + ·

=
+

≅
+ν

ν

ν

−

−f
Ka a

Ka a
Kc

Kc
[P L]

[P (H O) ] [P L]
( )

1 ( ) 12

3 1

3 1

3

3
(13)

The last expression in eq 13 is obtained by invoking the
assumption that the cosolute is sufficiently dilute that a3 ≅ c3
and a1 ≅ 1.0. This assumption prevails throughout the
remainder of this paper. It is shown in Appendix A that the
exchange reaction contribution is

νΓ = − +M Kc c c Kc(2) ( ( / ) )/(1 )3
er

3 3 1 3 (14)

Whenever K > ν/c1 ≅ v3̅/ϕ1 ≃v3̅, which holds for all binding
sites of significance when ϕ1 ≈ 1.0, Γ3

er(2) is positive and causes
a decrease in μ2

0 with increasing c3.
Summing the excluded volume and exchange reaction

contributions yields the total non-electrostatic PIC

ν

Γ = Γ + Γ

= − Δ + − +c V M Kc c c Kc

(2) (2) (2)

( ( / ) )/(1 )
3 3

ex
3
er

3
ac

3 3 1 3 (15)

When the exchange constants K and M are sufficiently large,
the binding sites are nearly saturated at such a low c3 ≈ 10/K
that c3ΔVac ≪ M, and the MKc3/(1 + Kc3) ≃ M term
predominates. In this case, Γ3(2) is positive and μ2

0 decreases
with increasing c3. In this same limit, wherein the cosolute
binding term predominates, the variation of μ2

0 with c3 is given
by

μ μ∂ ∂ = −Γ ∂ ∂

= − +

∞ ∞c c

MkTK Kc

( / ) (2)( / )

/(1 )

T P c T P c2
0

3 , , 3 3 3 , ,

3

2 2

(16)

where eq 2 has been employed. Equation 16 shows explicitly
how μ2

0 declines with increasing c3. This variation of the free
energy per macromolecule with increasing concentration of a
binding cosolute can also be obtained directly from ordinary
solution thermodynamics, without recourse to Kirkwood−Buff
theory, as shown in detail in section S3 of the Supporting
Information. The total free energy of the solution decreases as
the initially empty binding sites of the macromolecule
spontaneously equilibrate with the prevailing chemical potential
of species 3. This decrease in free energy per macromolecule is
the contribution of the binding reaction to μ2

0, and (∂μ2
0/

∂c3)T,P,c2∞→0 is just the variation of that contribution with c3. An
advantage of the Kirkwood−Buff formulation is that it
encompasses the case of weak as well as strong binding, and
also the case where excluded volume interactions make an
important or even dominant contribution to Γ3(2), whereas
ordinary solution thermodynamics does not.

Thermodynamic Forces Arising from Chemical Po-
tential Gradients. We now consider a solution at constant T
and P, wherein small non-equilibrium gradients of c2 and c3
(and c1) prevail. All macroscopic gradients are assumed to lie in
the x-direction. The chemotactic force in the x-direction
exerted on the rather dilute 2 macromolecules is taken to be

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp302587d | J. Phys. Chem. B 2013, 117, 7626−76527631



μ

μ μ μ

= −

= − ∂ ∂ ∂ ∂
− ∂ ∂

= +Γ −

∞ ∞

F x x

c c x
kT c c c x

kT c c x kT c c x

( ) (d /d )

( / ) ( / ) d /d
( ( ln )/ ) d /d

(2)( / )(d /d ) ( / )d /d

T P

T P c T P c

T P

ch 2 ,

2
0

3 , , 3 3 , , 3

2 2 , 2

3 3 3 2 2

2 2

(17)

The last term, which arises from the gradient of c2, is the
thermodynamic force that drives ordinary mutual diffusion of
any dilute species. (A (1 − ϕ2)

−1 correction must be applied,
when ϕ2 is not negligibly small.39,54) Diffusion is a reasonably
well understood process that need not be considered further in
this study, except insofar as it predicts the evolution of cosolute
gradients in time. In contrast, the first term arises from the
gradient of μ2

0 due to the gradient of any dilute cosolute that
exhibits significant positive or negative preferential interactions
(relative to solvent) with the macromolecule.
When Γ3(2) is negative, as is the case when excluded volume

interactions predominate, the cosolute gradient force in eq 17 is
in the opposite direction to the cosolute gradient. In other
words, the macromolecule moves toward a region with a lower
cosolute concentration in order to lower its chemical potential.
Conversely, when Γ3(2) is positive, as is the case when the
macromolecule exerts a strong binding affinity for cosolute
(relative to solvent), the cosolute gradient force in eq 17 is in
the same direction as the cosolute gradient. In this case, the
macromolecule lowers its chemical potential by moving toward
a region of higher cosolute concentration, as illustrated
schematically in Figure 1.

The Excluded Volume Force. The chemotactic force
arising from the different volumes excluded by the macro-
molecule to cosolute and solvent centers is given simply by Fch
= −(V3

ex − V1
ex)kT dc3/dx and is directly proportional to the

concentration gradient. Consider a spherical macromolecule of
radius R = 1 μm = 10−4 cm suspended in a 0.1 M solution of
glycerol in water. The effective radius of glycerol is R3 = (1/
2)(v3̅)

1/3 = 2.45 × 10−8 cm, and that of water is R1 = (1/
2)(v1̅)

1/3 = 1.48 × 10−8 cm. The volume excluded to glycerol
centers is V3

ex = (4π/3)(R + R)3, and that excluded to water
centers is V1

ex = (4π/3)(R + R1)
3, which gives V3

ex − V1
ex = 1.219

× 10−15 cm3. If the glycerol gradient is dc3/dx = 6.022 × 1019

molecules/cm4, which corresponds to 0.1 M cm−1, the
predicted force at 293 K is Fch = −2.97 × 10−9 dyn ≅

−0.030 pN. Larger forces would require a larger spherical
macromolecule, a larger cosolute, or a greater cosolute gradient.

The Force Arising from Cosolute Binding. Upon
substituting eq 16 (valid when K ≫ v3̅) into the first term of
eq 17, we obtain the chemotactic force arising from neutral
cosolute binding

= +

= +

∞

∞

F MkT K Kc c x

MkT Kc Kc c x

( /(1 ))(d /d )

( /(1 ))(d ln /d )

T P c

T P c

ch 3 3 , ,

3 3 3 , ,

2

2 (18)

which predominates whenever MK/(1 + Kc3) ≫ ΔVac. Fch has
the same sign as (dc3/dx)T,P,c2∞, so the macromolecules in this
case should move toward a higher concentration of c3.
Under near saturation conditions, when Kc3 ≫ 1.0, this force

is given simply by

= ∞F MkT c x(d ln /d )T P cch 3 , , 2 (19)

Because this force is proportional to the gradient of ln c3(x)
rather than simply the gradient of c3(x), it depends only upon
the relative shape of the concentration profile, c3(x)/c3(x0),
where x0 is an arbitrary position in the gradient, but not upon
its magnitude, c3(x0). Thus, two cosolute concentration profiles
with the same relative shape, c3(x)/c3(x0), but differing in
magnitude, c3(x0), by a factor of 10 or 100 or more, would
generate the same force on the macromolecule, provided that
the conditions Kc3 ≫ 1.0 and c3ΔVac ≪ M hold for both
profiles. Thus, c3 can be neither too small nor too large in order
to observe this invariance of the force to the magnitude of
c3(x0).
When c3 is sufficiently small that Kc3 ≪ 1.0, then

= =∞ ∞F MkTKc c x MkTK c x(d ln /d ) (d /d )T P c T P cch 3 3 , , 3 , ,2 2

(20)

Thus, for a fixed value of (∂ ln c3/dx)T,P,c2∞, Fch vanishes in the
limit Kc3 → 0. In this limit, the exchange (or binding) sites for 3
are all unoccupied. For a given relative concentration profile of
cosolute, the force is maximal when all exchange (or binding)
sites are fully occupied by cosolute, and is zero when they are
completely empty.
We note that d ln c3 = (1/c3)dc3 is unitless, as is the product

Kc3. Hence, in eqs 18−20, any concentration unit can be
employed for c3, provided K has the corresponding inverse unit,
without altering the value of the calculated force.
Consider a spherical macromolecule of radius R = 1 μm =

10−4 cm bearing M = 105 surface binding sites with K = 108

M−1 =1.66 × 10−19 m3/molecule. The area per binding site is
Ach = 1.26 × 104 Å2. The ligand concentration is assumed to be
c3 = 10−6 M, so c3K = 100 and f ≅ 0.99. The ligand gradient is
assumed to be dc3/dx = 0.1 M cm−1, as assumed for the
excluded volume force. The predicted force on the sphere at
293 K is Fch = 4.00 × 10−4 dyn = 4000 pN. This force exceeds
by 1.33 × 105-fold that reckoned above for excluded volume
interactions in the case of glycerol with a similar gradient. If the
ligand has the same volume as glycerol, the inequality,MK/(1 +
Kc3) ≫ ΔVac, is well satisfied for all c3 from 0 to 0.0136 M.

Choice of Components. For the purpose of evaluating
either Γ3(2) or the chemotactic force, Fch, the macromolecular
component 2 must be regarded as the bare species, whose
environment, including waters of hydration and bound cosolute
molecules, contributes to its chemical potential. It is essential
that all exchangeable water and cosolute species, whether
bound or free, must appear in g32(r), g12(r), G32, and G12.

Figure 1. Schematic illustration of a spherical macromolecule in a
concentration gradient of much smaller cosolute molecules. If the
cosolute accumulates preferentially (relative to solvent) in the vicinity
of the macromolecule, the latter experiences a force in the +x
direction. Conversely, if the cosolute is excluded preferentially (relative
to solvent) from the vicinity of the macromolecule, the latter
experiences a force in the −x direction.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp302587d | J. Phys. Chem. B 2013, 117, 7626−76527632



Binding of Electoneutral Ionic Bases to Acid Groups
of Macromolecules. The above theory applies to the binding
of electroneutral ionic cosolute bases, specifically Na+ + OH−,
to electroneutral ionic or non-ionic macromolecular species.
We verify this assertion in the following way. We consider a
macromolecule (P) bearing M identical electroneutral acid
groups, which could be carboxylic acid, sulfuric acid, sulfonic
acid, phosphoric acid, or silanol groups. We focus here on
carboxylic acid (−COOH) groups. In a thermodynamic sense,
each carboxylic acid group is capable of binding an electro-
neutral Na+ + OH− “molecule” according to

− + + ⇌ − + ++ − − +P COOH Na OH P COO Na H O2
(21)

After the reaction, the Na+ ion, or another one that could be
substituted for it, is electrostatically confined to the domain of
the macromolecule, just as it was confined to the domain of the
OH− beforehand. In addition, a molecule of H2O is released
from the macromolecule. Hence, eq 21 can be regarded as an
exchange reaction, wherein one “molecule” of ionized NaOH is
thermodynamically bound to, and a H2O is released from, the
same site on the macromolecule.
In this case, the cosolute NaOH comprises two dilute ions,

Na+ and OH−, each of which contributes as an effectively
independent particle to lower the solvent chemical potential. Of
course, when the charge density of a macromolecule is so large
that it becomes a strong polyelectrolyte, the electrostatic free
energy per negative charge is much greater for the polyanion
than for OH− ions, and this has significant consequences, as will
be seen in the next section. For simplicity, we first conduct a
thermodynamic analysis of spontaneous NaOH binding in
Appendix B, wherein the small ions are regarded simply as
independent particles, and no account is taken of the
electrostatic free energy of the macromolecule. The results in
eqs B7 and B8 are identical to those for a non-ionic cosolute in
eqs 16 and 18, provided that, in the latter, K = Kb, where Kb =
(cPCOO−)(X1)/(cPCOOH)(cOH−) is the equilibrium constant for
reaction 21, cOH− = cNaOH is the concentration of OH− ions, and
X1 ≃ 1.0 is the mole fraction of solvent (H2O). In this sense,
eqs 16 and 18 are verified for macromolecules of sufficiently
low charge density that the electrostatic free energy of a
carboxylate group, −COO−, is comparable to that of a
hydroxide ion, OH−, in which case the electrostatic free energy
affects both reactants and products similarly and exerts no
significant influence on the binding reaction 21. In this case, the
chemotactic OH−-binding force exerted on the macromolecule
by a gradient of OH− ligands is

= +− − − ∞F MkT K c K c c x( /(1 ))(d ln /d )T P cb b OH b OH OH , , P

(22)

which is identical to eq 18, if species 3 is NaOH.
Electrostatic Free Energy and the Effects of Mono-

valent Electrolyte. The electrostatic free energy (ΔGP
el) of a

macromolecule of fixed size with charges all of the same sign is
generally positive, and increases with increasing number of
charges but decreases with increasing concentration of
monovalent electrolyte, S. The electrolyte S could be either
monovalent salt or monovalent ionic base (or acid), and in
general is the sum of both, so cS ≡ csalt + cOH− (or cS = csalt +
cH+). Such electrolyte may increase Kb in eq 22 and also
decrease the electrostatic free energy of the polyion and
provides an additional electrolyte gradient force.

A. Effect of Electrolye on the Equilibrium Constant for
OH− Binding. The effect of electrolyte on the equilibrium
constant for an arbitrary reaction involving one or more
electroneutral polyanion components, P ≡ P(COO−)N·(Na

+)N,
N ≤ M, each of which dissociates completely to its polyanion,

AN−
≡ P(COO−)N, and its NX+ ≡ Na+ counterions, is given

by55

∂ ∂ = − + ΔΓ∞K c H( ln / ln ) 2 2T P cb S , , SP (23)

Here, H is the net number of “molecules” of neutral small-ion
salt produced by the reaction and ΔΓS is the difference in
electrostatic PIC of the neutral polyanion species for the small-
ion electrolyte between products on one hand and reactants on
the other. For the reaction in eq 21, we can set H = 0 and treat
OH− as a polyanion of unit charge. Also, during the reaction
P(COO−)N → P(COO−)N+1, as one more carboxyl group is
titrated, and the counterion of the consumed OH− becomes a
counterion of the new polyanion component, P-
(COO−)N+1·(Na

+)N+1, which is also completely dissociated.
Thus, ΔΓS ≡ ΓS(P(COO

−)N+1) − ΓS(P(COO
−)N) − ΓS(OH

−)
≅ 1·∂ΓS(P(COO

−)N)/∂N − ΓS(OH
−).

In general, for a completely dissociated polyanion

component, AN−

+ NX+, immersed in a solution of monovalent
electrolyte, S = X + Y, where X ≡ X+ and Y ≡ Y− are
monovalent cation and anion, respectively, at concentration cX
= cS = cY, the electrostatic PIC for electrolyte is given by56,57

∫Γ = −
−

c cr r(A ) d ( ( ) )N
Y YS

3
(24)

The integral is taken over the entire volume of a solution
containing a single polyanion, and is clearly the net number of
excess co-ions in the ion atmosphere of the polyanion. Because

co-ions are always excluded to some extent, ΓS(A
N−

) is always
negative. The neutral electrolyte concentration at position r in

the ion atmosphere of AN−

is precisely equal to the co-ion

concentration, cY(r), at that same point, so ΓS(A
N−
) pertains

equally to net excess electrolyte in the ion atmosphere of AN−

≡
P(COO−)N. It is known that ΓS(P(COO−)N) ≅ −N/2
whenever κδ ≫ 1.0, where δ is the spacing between nearest-
neighbor charges and κ is the Debye screening parameter,
which is given by κ = (3.28 × 107)I1/2 (cm−1), where I is the
ionic strength. In this limit, each −COO− group behaves like an
isolated monovalent anion, for which linear Poisson−
Boltzmann (LPB) theory approximately applies, and the
number of excess co-ions per intrinsic charge is Γ1S(P(COO

−))
≡ (1/N)ΓS(P(COO

−)N) = ΓS(OH
−) ≅ −1/2. However, (1/

N)ΓS(P(COO
−)N) increases (becomes less negative) with

increasing N, whenever non-linear Poisson−Boltzmann
(NLPB) theory applies. In this case, the compensating charge
in the ion atmosphere comes more from an excess of (positive)
counterions and less from a deficit of (negative) co-ions. Thus,
in general, −N/2 ≤ ΓS(P(COO

−)N) < 0, which implies that
−1/2 ≤ ∂ΓS(P(COO

−)N)/∂N < 0. Consequently, ΔΓS must lie
in the range 0 ≤ ΔΓS < 1/2.

B. Effect of Electrolyte on the Chemical Potential of the
Macromolecule. The standard state chemical potential of the
macromolecule bearing M carboxyl groups is given by

μ μ= + ∂Δ ∂

+ Δ

−c c G n

G

( , ) ( / )T P n nP
0

OH
0

salt
0

P(COOH)
0

P
0

, , ,

P
el

w
0

NaOH
0

(25)
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where μP(COOH)
0 pertains to the non-ionic P(COOH)M species,

the second term on the right-hand side arises from OH−

binding and is given by eq B6, and the third term is the
electrostatic free energy of the resulting polyanion, P(COO−)N,
bearing N = fM intrinsic (carboxylate) charges, where f ≡
(KbcOH−/(1 + KbcOH−)) is the fraction of titrated (ionized)
carboxyl groups. It is noteworthy that the OH−-binding
reaction 21 does not change the number of Na+ ions in the
solution, so μP(COOH)

0 (cOH−
0 , csalt

0 ) contains no NμNa+ term due to
either net binding or net release of counterions, and represents
the free energy change upon adding a single non-ionized
macromolecule to the solution in which it subsequently ionizes.
Differentiating eq 25 with respect to d ln cS at constant T, P,
and cP

∞ and constant cOH− in the KbcOH− terms yields

μ∂ ∂

= −
∂ +
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(26)

where the relation (∂ΔGP
el/∂ ln cS)T,P,cP∞ = −kT(N + 2ΓS(P-

(COO−)N))
55−58 was employed, f is given just above, and

≡ + ∂Γ ∂ + Γ− −W N2{1 (P(COO ) )/ (P(COO ) )}N NS 1S
(27)

The cÔH− subscripts in eq 26 indicate that the value of cOH− in
the KbcOH− terms remains constant, when cS = csalt + cOH− is
varied (in the sense of differentiation) by varying cOH−. Using
the ranges −1/2 ≤ ∂ΓS(P(COO

−)N)/∂N < 0 and −1/2 ≤
Γ1S(P(COO

−)N) < 0, we find that 0 ≤ W ≤ 2.0. Thus, (∂μP
0/∂

ln cS)T,P,cP∞,cÔH− is always either vanishing or negative. This is
expected, since there is always either a vanishing or positive net
excess of small ions (counterions plus co-ions) in the ion
atmosphere of any polyion, which can be regarded as a
vanishing or net positive preferential electrostatic interaction
with constituents of the surrounding electrolyte solution,
despite the exclusion of co-ions.
The slope of μP

0 with respect to ln cOH− due solely to OH−

binding at constant (possibly vanishing) salt concentration is
obtained from eq 22 as

μ∂ ∂ = −− ∞c kTMf( / ln )T P c cP
0

OH , , ,
bind

P salt (28)

The total slope of μP
0 with respect to cOH− is the sum of that

in eq 28 plus that in eq 26 multiplied by ∂ ln cS/∂ ln cOH− =
cOH−/(csalt + cOH−), namely,

μ∂ ∂

= − + +

− ∞

− −

c

kTMf c c c W

( / ln )

{1 ( /( )) }

T P c cP
0

OH , , ,
tot

OH salt OH

P salt

(29)

In general, the factor in curly braces lies in the range 1.0 ≤ 1 +
W < 3.0.
The total slope of μP

0 with respect to ln csalt is that in eq 26
multiplied by ∂ ln cS/∂ ln csalt = cOH−/(csalt+ cOH−), namely,

μ∂ ∂ = − +∞ − −c kTMf c c c W( / ln ) ( /( ))T P c cP
0

salt , , , salt salt OH2 OH

(30)

In the limit csalt ≫ cOH−, eq 30 becomes precisely eq 26 with cS
= csalt, as expected. In the limit cOH− ≫ csalt, (∂μP

0/∂ ln
csalt)T,P,c2∞,cOH−

becomes negligibly small compared to (∂μP
0/∂ ln

cOH−)T,P,c2∞csalt
tot , whenever ∂ ln cOH−/∂x and ∂ ln csalt/∂x are roughly

comparable.
Total Forces on Negatively Charged Microspheres

Arising from Gradients of OH− and Salt. The total force
arising from a gradient of OH− in the presence of an arbitrary
concentration of salt is obtained from eq 29 as

μ≡ − ∂ ∂

= + +

− − ∞ − ∞

− −

− ∞

F c c x

kTMf c c c W
c x

( / ln ) (d ln /d )

{1 ( /( )) }
(d ln /d )

T P c c T P c c

T P c c

OH P
0

OH , , , OH , , ,

OH salt OH

OH , , ,

P salt P salt

P salt

(31)

where f = KbcOH−/(1 + KbcOH−) and W is given by eq 27. The
second term is generally positive and acts to augment the first
term, so FOH− is always directed along the hydroxide gradient.
The second term is negligible compared to the first whenever
csalt ≫ cOH−, or when W ∼ 0.
The total force arising from a salt gradient in the presence of

an arbitrary concentration of OH− is obtained from eq 29 as

μ= − ∂ ∂

= + +

∞ − ∞ −

−

F c c x

kTMf c c c W c x

( / ln ) (d ln /d )

( /( ) (d ln /d ))

T P c c T P c csalt P
0

salt , , , salt , , ,

S salt OH salt

P OH P OH

(32)

In both eqs 31 and 32, W should be evaluated for N = fM. Fsalt
is always directed along the salt gradient.
At times, it will be useful to consider the total electrolyte

gradient force, FS = kTMfW(d ln cS/dx)T,P,cP∞,cÔH−
, which is the

sum of the second term in FOH− plus Fsalt. The total chemotactic
force can then be written as

= ∂

+ ∂ ̂

− ∞

∞ −

F kTMf c x

W c x

{( ln /d )

( ln /d ) }

T P c c

T P c c

ch OH , , ,

S , , ,

P salt

P OH (33)

The subscript cÔH− on (d ln cS/dx)T,P,cP∞,cÔH− means that the cOH−

concentration in the KbcOH− terms is held constant, while cOH−

in cS = cOH− + csalt is varied.
Analysis of W. Some insight into the maximum value of W

(cf. eq 27), and the conditions under which its minimum (W =
0) and maximum (W = 2.0) values prevail, is gained as follows.
Whenever linear Poisson−Boltzmann (LPB) theory is valid,
one has ΓS(P(COO

−)N) = −N/2, ∂ΓS(P(COO
−)N)/∂N = −1/

2, Γ1S(P(COO
−)N)/∂N = −1/2 = ΓS(OH

−),56,57 and W = 0.
Approximate values of Γ1S(P(COO

−)N) can be estimated for
a spherical particle whenever the surface of the sphere is
smooth and uniformly charged and the ion atmosphere
thickness is thin compared to the particle radius, so κR ≥ 30.
For such an effectively flat uniformly charged surface, an
analytical expression for Γ1S(P(COO

−)N) has been derived57

from the analytical (Gouy−Chapman) solution of the NLPB
equation, as described in section S4 of the Supporting
Information. The relevant expression (eq S4.6, Supporting
Information) is
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κ

σ σ

Γ = −

− + +

− A c(P(COO ) ) 2 (1/ )

(1 1/( 1 ))

N1S ch S

d d
2

(34)

where Ach is the average surface area per intrinsic charge and σd
= (1/Ach)e0

22π/(εkTκ) is the dimensionless surface charge
density. When Ach → ∞, then σd → 0, and Γ1S(P(COO

−)N) →
−1/2, as expected. When Ach → 0, then σd → ∞, and
Γ1S(P(COO

−)N) → 0, as expected.
If R = 10−4 cm, ε = 80, T = 293 K, e0 = 4.8 × 10−10 esu

(protonic charge), and CS is the molar electrolyte concen-
tration, then κ = 3.28 × 107 CS

1/2 cm−1, and cS = CSNAv/1000
molecules/cm3, where NAv = 6.022 × 1023 is Avogadro’s
number. The condition κR ≥ 30 is obeyed for all CS ≥ 10−4 M,
and even when CS = 10−5 M, κR = 10.4, so the thin ion
atmosphere condition almost holds there as well. If we assume
that ∂ΓS(P(COO

−)N)/∂N = Γ1S(P(COO
−)N), then it is also

possible to estimate W. If Ach = 10−12 cm2/charge (104 Å2/
charge), then the estimated values of Γ1S(P(COO

−)N) and W
range from Γ1S(P(COO

−)N) = −0.103 and W = 1.6 at CS =
10−5 M to Γ1S(P(COO

−)N) = −0.466 and W = 0.14 at CS =
10−2 M. However, if Ach = 10−14 cm2/charge (100 Å2/charge),
the values of Γ1S(P(COO

−)N) and W range from Γ1S(P-
(COO−)N) = −0.001 and W = 2.0 at CS = 10−5 M to Γ1S =
−0.035 and W = 1.9 at CS = 0.01 M. Typically, Ach ≤ 100 Å2/
charge for microspheres, so it is likely that W takes a value not
far from 2.0 over the range of electrolyte concentrations
considered here. In that case, the electrolyte (second) term in
eq 31 exceeds by nearly 2.0-fold the pure binding (first) term in
that same equation, whenever cOH− ≫ csalt. However, the
surfaces of the microspheres are locally quite rough, and the
distribution of intrinsic charges is most likely rather
heterogeneous with Ach possibly being so small in some
regions as to limit ionization, while being much greater in
others. In such a case, Γ1S could well be significantly lower
(more negative) than zero, and the corresponding value of W
could be significantly smaller than these values estimated for
smooth uniformly charged surfaces with Ach = 100 Å2/charge.
For the same value of Ach, the Fsalt term in the chemotactic
force

= +−F F Fch OH salt (35)

would be expected to exceed FOH−, whenever csalt > 3cOH− and
(d ln csalt/dx)T,P,cP∞,cÔH− > (d ln cOH−/dx)T,P,cP∞,csalt.
The foregoing analysis of W was based upon the assumption

that ∂ΓS(P(COO
−)N)/∂N ≃ Γ1S(P(COO

−)N). Given the
observation that Γ1S(P(COO

−)N) increases with increasing N,
it is readily shown that ∂ΓS(P(COO−)N)/∂N ≥ Γ1S(P-
(COO−)N). Consequently, when Γ1S(P(COO

−)N) is close to
zero (only slightly negative), ∂ΓS(P(COO

−)N)/∂N is even
closer to zero (less negative). Hence, the preceding estimates of
this derivative and W are lower bounds.
Effect of Electroneutral Ionic Acids on Macromole-

cules Bearing Acid Groups. Macromolecules bearing acid
groups spontaneously dissociate in water, but in the presence of
an acid, such as H+ + Cl−, the extent of this dissociation is
diminished. The free energy change upon equilibrating the
dissociation reaction

⇌ +− +PCOOH PCOO H (36)

is evaluated in section S5 of the Supporting Information, and
used to obtain the force Fba in the presence of an HCl gradient,
which is given in eq S5.8 (Supporting Information). This force

is in the direction of lower H+, or higher OH−, concentration.
Equation S5.8 (Supporting Information) may be rewritten in
the following way. Combining reaction 36 with the reverse of
eq 21 yields the net reaction

⇌ ++ −H O H OH2 (37)

with equilibrium constant Kw = 10−14 = Kd/Kb, where Kd = 1/
Ka is the acid dissociation constant. Hence, the acid association
constant is Ka = 1/KwKb. By using this relation together with cH+

= Kw/cOH− in eq S5.8 (Supporting Information), we obtain
precisely eq 22. Thus, Fba and Fb are one and the same, as might
have been anticipated. It is important to note that the force falls
off and becomes very small when KacH+ ≫ 1 or, equivalently,
when KbcOH− ≪ 1.0, and the macromolecule is practically
untitrated (non-ionized).

Binding of Electroneutral Ionic Acids to Basic Groups
on Macromolecules.We consider a macromolecule P bearing
M identical electroneutral basic groups, which could be amine,
amidine, or guanidine groups. Here we focus on primary amine
(−NH2) groups. Each amine group can thermodynamically
bind an electroneutral H+ + Cl− “molecule” according to

− + + ⇌ − ++ − + −P NH H Cl P NH Cl2 3 (38)

After the reaction, the Cl− ion, or one substituted for that, is
electrostatically confined to the domain of the macromolecule,
just as it was confined to the domain of the H+ beforehand. In
this case, the analysis and results are identical to those obtained
for base binding to acid groups with the following replace-
ments: cOH

− → cH+, Kb → Ka = (cPNH3
+)/(cPNH2

)(cH+),
Γ1S(PCOO

−) → Γ1S(PNH3
+), and Γ1S(OH

−) → Γ1S(H
+).

Moreover, for a cation, AN+

, with N intrinsic positive charges,
immersed in a solution of monovalent electrolyte, S = X + Y (X
≡ X+, Y ≡ Y−) at concentration cX = cS = cY, the PIC for
electrolyte per intrinsic polyion charge is

∫Γ = −+ N c cr r(A ) (1/ ) d ( ( ) )N
X X1S

3
(39)

Thus, eqs 22, 23, 25, 26, 32, and 35 become, respectively, eqs
40−45 below.

= + ∞F MkTf c x(d ln /d )T P ca H , , P (40)

where f = KacH+/(1 + KacH+) is the protonated fraction of amine
groups.

∂ ∂ = − + ΔΓ∞K c H( ln / ln ) 2 2T P ca S , , S2 (41)

where ΔΓS ≡ 1(∂ΓS(P(NH3
+)N)/∂N) − ΓS(H

+), and H = 0 for
reaction 38.

μ μ= + ∂Δ ∂ + Δ+c c G n G( , ) ( / )T P n nP
0

H salt Pn
0

P
0

, , , P
el

w
0

HCl
0

(42)

where μPn
0 pertains to the neutral P(NH2)M species. The total

proton gradient force is

= + ++ + +

+ ∞

F kTMf c c c W

c x

{1 ( /( )) }

(d ln /d )T P c c

H H salt H

H , , ,P salt (43)

where W = 2{1 + ∂ΓS(P(NH3
+)N)/∂N + Γ1S(P(NH3

+)N)}. The
total force arising from a salt gradient is

= · + + ∞ +F kTMf c c c W c x( /( )) (d ln /d )T P c csalt salt salt H salt , , ,P H

(44)
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In eqs 43 and 44, W is to be evaluated for N = fM. The total
chemotactic force contains the contributions of both proton
and salt gradients

= ++F F Fch H salt (45)

A Simple Interpretation of the Ligand Binding Force.
In the limit, f → 1.0, where practically all of the −COOH
groups have bound an NaOH to become a −COO− group plus
its counterion, a particularly simple picture of the driving force
for translation of the macromolecule emerges. Translation of
the polyion without comigration of its counterions is effected
by first converting it to the neutral P(COOH)M species by
carrying out the reverse of eq 21 for each −COO− group,
which injects M OH− ions into the solution at that position
(x1) but does not affect the number of Na+ ions there. After
translating the now neutral P(COOH)M species to another
place in the gradient (x2), the polyanion is recharged to the
same extent according to eq 21 by absorbing M OH− ions from
the solution at that point (x2), but that does not affect the
number of Na+ ions there either. Thus, the migration process
involves no net translocation of Na+ ions from one point to
another but does involve the removal of M OH− ions from the
solution (and attachment of those to a P(COOH)M) at x2 and
the injection of M OH− ions (from the reaction P(COO−)M +
M H2O→ P(COOH)M + M OH−) into the solution at x1. This
is tantamount to translocation of M OH− from x2 to x1 in
concert with translocation of P(COO−)M from x1 to x2.
The negative of the resulting change in free energy per unit

translation of the P(COO−)M due to the OH− dissociation and
rebinding steps in this case is given by

−Δ − ≡ −

−

− −G x x MkT c x c x

x x

/( ) (ln[ ( )] ln[ ( )])

/( )
tr 2 1 OH 2 OH 1

2 1 (46)

Equation 46 is just a discretized version of eq B8 in the
(assumed) limit f = 1.0. Thus, for a completely titrated
polyanion, the combined OH− dissociation and rebinding steps
give the primary contribution to the OH−-binding force in an
NaOH gradient. The total OH− gradient force, given in eq 31
contains also a correction term, (cOH−/(csalt + cOH−))W, in the
curly braces that takes into account the electrolyte contribution
to decrease the electrostatic free energy of the charged
macromolecule directly and also indirectly by increasing the
binding constant for the OH− binding reaction.
Induced Velocity. A chemotactic force, Fch, acting on a

macromolecule is manifested by an induced velocity

ζ=u F /ch (47)

where ζ is the relevant friction factor. For a spherical
macromolecule that is propelled by an external agent through
a liquid with stick boundary conditions, ζ is given by Stokes law

ζ πη= R6 (48)

where R is the macromolecular radius and η is the viscosity of
the solution containing components 1 and 3. However, when a
pair of spherical molecules in solution interact via an
intermediate- or long-range potential that gives rise to opposing
center-to-center direct forces on the two spheres, hydro-
dynamic interactions act to diminish, but not reverse, the
sphere velocities induced by those forces.40 Such hydrodynamic
interactions increase in magnitude with decreasing distance
between the spheres and, according to lubrication theory with
stick boundary conditions, reduce the velocities of both spheres

to zero at the contact distance.41−45 Thus, under contact or
near contact conditions, Stokes law is totally inadequate.

Surface Tractions and the Hydrodynamic Calculation.
We now consider the circumstance wherein small spheres in
solution interact with the surface of a very much larger sphere
by such short-range forces that significant strength of
interaction occurs only at or very near the contact distance,
where no solvent molecules intervene between the two
surfaces. Under such conditions, the normal component of
the force is unable to induce significant relative motion of the
two spheres along their line of centers, because at or near
contact hard-core repulsions prevent their moving significantly
closer together, and the force vanishes when the spheres move
far enough apart to admit the first layer of intervening water
molecules. Moreover, for all forces whose range is very small
compared to the radius of the large sphere, hydrodynamic
interactions nearly cancel the direct center-to-center forces.
When such contact or very short-range interactions predom-
inate, they give rise (in a statistical sense) to a free energy per
unit area of the interface between the large sphere and the
solution containing the small spheres, which could be either
excluded osmolytes or ligands that bind to surface sites on the
larger sphere. When there exists a gradient of small sphere
concentration in the solution with a component tangent to the
large sphere surface, there will be a gradient of the surface free
energy per unit area, which in turn gives rise to a tangential
force per unit area, or traction, at the large sphere−solution
interface. This tangential traction acts with equal strength, but
in opposite directions, on the large sphere and the solution
containing the small spheres. The ligand binding and excluded
volume contributions to the chemotactic force, Fch, are true
contact forces, whereas the range of the electrostatic
interactions is the Debye length, 1/κ. The latter force is
treated only approximately by regarding it as a contact
interaction in Fch, as is done here. Any contact forces normal
to the surface of the large sphere involve only those small
spheres and solvent molecules at the contact distance, and are
not transmitted to the other small spheres or solvent molecules
in the solution. Consequently, no pressure gradient is expected
in the surrounding solution, and any motion of the large sphere
relative to the solution must arise entirely from the tangential
tractions. Hence, ∇P = 0, and there are no body forces to
consider, so the steady-state linear (creepy flow) Navier−
Stokes equation becomes

∇ =v 02 (49)

where v is defined as the fluid velocity in a coordinate frame
attached to a stationary microsphere.
Of course, no tangential motion of the fluid relative to the

sphere can arise from contact tractions unless the stick
boundary condition is replaced by something like the partial
slip condition, as described below. The fluid is practically
incompressible, so ∇·v = 0. In this example, ∇ × (∇ × v) =
∇(∇·v) − ∇2v = 0, which can be satisfied by ∇ × v = 0. This
condition in turn can be satisfied by v = ∇ϕ, where ϕ is a scalar.
By taking ∇2ϕ = 0, the conditions ∇·v = 0 and ∇2v = 0 are
both satisfied (the latter because the operators ∇2 and ∇
commute). This reasoning suggests that ϕ is a sum of well-
known solutions of Laplace’s equation with coefficients to be
determined by the boundary conditions.
Consider the diagram in Figure 2. The origin of the

coordinate system is taken at the center of a stationary
microsphere of radius R, which is suspended in a fluid
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(solution) that moves with velocity v = −ux,̂ at large distances
from the sphere, where x ̂ is a unit vector along the +x axis.
Gradients of ln cOH− and/or ln csalt lie along +x,̂ which is taken
to be the polar axis for spherical polar coordinates. We consider
an infinitesimal patch of microsphere surface with area δA = R2

sin θ dϕ dθ. The y-axis and unit vector, y,̂ are chosen so that
this patch intersects the xy plane, which coincides with the
plane of the figure, and the z-axis is perpendicular to the xy
plane, extending outward toward the viewer. The patch has
Euclidean coordinates (x, y, 0) and spherical polar coordinates
(R, θ, 0). The unit vectors, r ̂ = x ̂ cos θ + y ̂ sin θ, and θ ̂ = x ̂ sin θ
+ y ̂ cos θ, in the xy plane are also indicated.
As noted above, the component of a chemotactic contact

force along a normal to the patch (i.e., along r)̂ produces no
significant motion of the sphere relative to its adjacent fluid.
However, the tangential component of that force per unit area
is a traction that simultaneously pushes the patch in the −θ̂
direction (toward greater x) and the solution in the +θ̂
direction (toward smaller x). The chemotactic force exerted on
the patch by the solution can be written as

σ δ= ̂kT A fGF x( )ch
pat

(50)

where

= ∂ ∂ + ∂ ∂ ̂− ∞ ∞ −G c x W c x{( ln / ) ( ln / ) }T P c c T P c cOH , , , S , , ,P salt P OH

(51)

is the gradient factor and σ is the number of surface acid groups
per unit area. The chemotactic force exerted on the solution by
the patch is, Fch

sol = −Fchpat. The tangential component of the
chemotactic force per unit area exerted on the solution by the
patch is (Fch

sol·θ ̂/δA)θ̂ = (kTσf G sin θ)θ ̂. In addition, the patch
exerts a viscous traction on the fluid at the interface, Tvis

sol =
−η(∂vθ(R, θ)/∂r)θ̂. In the steady state, the total force per unit
area exerted by the patch on the fluid surface must vanish, so
(Fch

sol·θ̂/δA)θ̂ + Tvis
sol = 0, which yields

η θ σ θ∂ ∂ =θv R r kT fG( , )/ sin (52)

The equivalent result for a flat surface is derived by a more
elaborate argument in Appendix E.
The boundary conditions for the fluid velocity are

θ =v R( , ) 0r (53a)

θ λ θ= ∂ ∂θ θv R v R r( , ) ( , )/ (53b)

θ θ θ θ→ ∞ = − = −θr v v r v r ulim( ) ( , ) cos ( , ) sinx r
(53c)

where u is the microsphere velocity in the +x ̂ direction relative
to stationary fluid at large distance. According to eq 53c, the x-
component of the fluid velocity in the frame of the stationary
sphere is then −u at large distance. Equation 53b is known as
the partial slip condition, and λ is the slip length. Combining
eqs 52 and 53b yields

θ σ λ η θ=θv R kT fG( , ) ( / ) sin (54)

which gives the tangential fluid velocity (in the reference frame
of the microsphere) at the microsphere surface in terms of
parameters governing the chemotactic force, the slip length, λ,
and the solution viscosity, η. Note that vθ(R, θ) is positive for
all values of θ in its allowed range, 0 ≤ θ ≤ π, so its x-
component is always negative, as expected. This property holds
for all values of r ≥ R, as will be seen.
The scalar (flow) potential, ϕ, is taken to be the l = 1

solution of Laplace’s equation

ϕ θ θ θ θ= + = +aP r brP a r br(cos )/ (cos ) cos / cos1
2

1
2

(55)

where P1(cos θ) denotes the rank 1 Legendre polynomial. This
yields

ϕ θ θ= ∂ ∂ = − +v r a r b/ 2 cos / cosr
3

(56a)

ϕ θ θ θ= ∂ ∂ = − −θv r a r b(1/ ) / sin / sin3
(56b)

where a and b are coefficients to be determined by the
boundary conditions. Applying eq 53a (eq 54) to eq 56a (eq
56b) yields

− + =a R b2 / 03 (57a)

σ λ η− − =a R b kT fG/ /3
(57b)

which in turn yield a = −(R3/3)kTσf Gλ/η and b = −(2/3)
kTσf Gλ/η. There results

σ λ η θ= − −v kT fG R r(2/3)( / )(1 / ) cosr
3 3

(58a)

σ λ η θ= +θv kT fG R r(1/3)( / )(( / ) 2) sin3 3
(58b)

The sphere velocity u (in the +x ̂ direction) relative to stationary
solution at large distance is determined by applying eq 53c,
which yields finally

σ λ η=u kT fG(2/3) / (59)

Evidently, u is independent of the microsphere radius, R, at
constant σ and λ. The surface density of acid groups can be
expressed as σ = M/4πR2, and u can be re-expressed as

ζ λ ζ= =u kTMfG R F/( ( / )) /st ch (60)

where Fch is the total chemotactic force exerted by the solution
on the microsphere and

ζ λ πη= R R( / )6 (61)

is the associated friction factor (or inverse mobility), which
exceeds the usual Stokes friction factor by the ratio R/λ.
Unfortunately, the σ (or M) values of the microspheres studied
by Zheng and Pollack were not reported and may not have
been available in any case. Nowadays, Ach = 1/σ is often
reported as the “parking area”, and typical values for carboxyl
microspheres with R = 1.0 nm lie in the range Ach = 14−100 Å2,
although values as low as 6 and as large as 150 Å2 have been
advertised. It was noted that true close packing of surface

Figure 2. Coordinates for the hydrodynamic calculation. The shaded
area is a planar section passing through the center of the spherical
macromolecule. The +x-axis is parallel to the relevant thermodynamic
force on the sphere, and is chosen as the polar axis of a polar
coordinate system. The y-axis is chosen to lie in the planar section, and
the z-axis (not shown) points toward the viewer. The unit vectors, r ̂
and θ̂, in the planar section are indicated.
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carboxyl groups requires Ach ≥ 20 Å2, and significantly smaller
experimental values were attributed to availability of subsurface
sites.60

The Unknown Value of λ. No measured values of λ for
water in contact with polymer microspheres have been
reported. Even for water in contact with glass, a consensus
value is lacking. The most precise measurements of λ for
polished glass yield λ = 26−57 nm,61 but other less precise
measurements indicate that λ ≤ 1 nm for plain pyrex and other
possibly unpolished glass surfaces.62 The value of λ typically
decreases with increasing surface roughness, and highly charged
(small Ach) microsphere surfaces appear to be rather rough in
the electron micrographs reported by some suppliers. Under
the present circumstances, a reliable a priori prediction of
microsphere velocities is not possible. Instead, we shall adjust a
single parameter, namely, the ratio, λ/Ach = λσ, to match the
observed velocity in expected gradients, and examine the values
of λ implied by various choices of Ach.
The Fluid Velocity Field. Note that the present fluid

velocity field differs greatly from that of Stokes flow. The
Cartesian components of the fluid velocity in the xy plane of a
coordinate frame that translates with the sphere with velocity u
= ux ̂ relative to resting fluid at large r → ∞ are given by

θ θ

σ λ η θ

= − +

= −
θS v v u

kT fG R r

cos sin

( / )( / )(cos 1/3)
x r

3 3 2
(62a)

θ θ σ λ η θ θ= + =θS v v kT fG R rsin cos ( / )( / ) sin cosy r
3 3

(62b)

These velocities decline as ∼1/r3 with increasing r, rather than
the ∼1/r falloff of the Stokes velocity, and the angular part of
the flow pattern is dipolar, which also differs from Stokes flow.
When the azimuthal angle, ϕ, differs from ϕ = 0, then one has

σ λ η θ θ ϕ=S kT fG R r( / )( / ) cos sin cosy
3 3

(62c)

σ λ η θ θ ϕ=S kT fG R r( / )( / ) cos sin sinz
3 3

(62d)

By using the relations cos θ = x/r, sin θ cos ϕ = y/r, and sin θ
sin ϕ = z/r, it was confirmed directly that ∇2Sx = 0 = ∇2Sy =
∇2Sz, so S and also v = S − ux ̂ satisfy eq 49. It was also verified
directly that ∇·S = 0 and ∇ × S = 0.
Conditions for Validity of eqs 59 and 60. It is assumed

in eqs 59 and 60 that cosolute diffusion is sufficiently rapid and
u is sufficiently small that the fluid flow associated with the
macromolecular motion does not significantly perturb the
cosolute gradient. This will be the case if the time, tM = R/u, for
the macromolecule to move a distance equal to its radius, R,
significantly exceeds the time, tNaOH = (10R)2/2D, for Na+ and
OH− ions to undergo an rms displacement of 10 macro-
molecular radii. The diffusion coefficient for NaOH is D = 2.1
× 10−5 cm2/s. This condition can be expressed as D/(50R) ≳ u.
For macromolecules of radius R ≲ 1 μm (10−4 cm), this
condition is easily met for macromolecular velocities less than
∼40 μm/s (0.0040 cm/s). The microsphere velocities reported
by Pollack and co-workers are typically only a few micrometers
per second or less, so this condition is satisfied in such cases.
It is also assumed in eqs 59 and 60 that the cosolute binding

reaction is sufficiently rapid to maintain equilibrium with the
solution surrounding the macromolecule at all times. This
condition can be stated as ln[cOH−(x + τu)/cOH−(x)] = τu∂ ln
cOH−/∂x ≤ 0.1, wherein the re-equilibration time, τ = τdiss +
τbind, is the sum of the mean time (τdiss) for dissociation of OH

−

from PCOO− (the reverse step of eq 21) and that (τbind) for
association of OH− wth PCOOH (the forward step of eq 21).
This condition states that the distance moved by the
microsphere along the gradient in the time required to undergo
a full (dissociation and rebinding) re-equilibration step should
result in a change of ln cOH− by less than 0.1, which corresponds
to a ≤10% change in the contribution of the binding reaction to
the standard state chemical potential of the macromolecule. For
reaction 21 at the jth site, τbind = 1/(kc⃗OH−) and τdiss = 1/k,⃗
where k ⃗ is the rate constant for the diffusion-controlled
bimolecular association step, k ⃗ = k/⃗Kb is the unimolecular rate
constant for the dissociation step, and Kb is the equilibrium
constant (at the midpoint (pH 6.0) of the titration curve) for
OH− binding to a −COOH group on a highly charged
microsphere. Typically, k ⃗ = 1010 M−1 s−1, and in this case, Kb =
108 M−1, so k ⃖ = 100 s−1 and τdiss = 0.01 s. For cOH− = 10−6 M,
one has τbind = 10−4 s and τ = 0.0101 s. For velocities u ≤
0.0004 cm/s, the above equilibration condition will be satisfied
for all gradients, dcOH−/dx ≤ 24750 cm−1, which likely
encompasses all practically attainable gradients. However, if
cOH− = 10−11 M, then τbind = 1 s, and the condition is satisfied
for all gradients, dcOH−/dx ≤ 25 cm−1, which holds for all times,
t ≥ 24 s, in the experiments of Zheng and Pollack23 (cf. Table
1), but not at shorter times. This re-equilibration condition

becomes much more stringent for much larger Kb, as occurs for
more acidic groups such as sulfuryl or sulfonyl groups, as
discussed in the subsequent paper II (10.1021/jp302589y).37

Whenever this condition fails, the velocities computed
according to eqs 59 and 60 will overestimate the actual
velocity. Since carboxylated microspheres are considered here
only at pH ≥ 3, and the observed velocities are in any case
≤0.0001 cm/s, the equilibration condition holds for all but the
very shortest times (the first several seconds).
In the case of amidinated spheres, the relevant reaction is

given by eq 38 with P−NH2 replaced by P−C(NH)NH2 and
P−NH3

+ replaced by P−C(NH2)2
+. In this case, the

equilibrium constant at the midpoint of the titration curve,
which is estimated to lie near pH 11.0 (after applying a
downward shift of ∼1.50 to the intrinsic pKa ≃ 12.50, due to
electrostatic interactions), is Ka ≃ 1011 M−1. The relevant
condition in this case is τu∂ ln cH+/∂x ≤ 0.1, where now τbind =
1/(kc⃗H+), k ⃗ ≅ 2 × 1010 M−1 s−1, k ⃖ = k/⃗Ka = 0.2 s−1, and τdiss = 1/
k ⃖ = 5.0 s. For cH+ = 10−4 M, one has τbind = 5 × 10−7 s and τ ≃
5.0 s. For velocities u ≤ 0.0004 cm/s, the equilibration
condition will be satisfied when ∂ ln cH+/∂x ≤ 50 cm−1, which is
the case for all times, t ≥ 6 s, in the experiments of Zheng and
Pollack. If cH+ = 10−10 M, then τbind = 2.0 s and τ = 7.0 s. In this
case, the equilibration condition becomes ∂ ln cH+/∂x ≤ 36

Table 1. Hydroxide Concentration Gradient and Velocity of
a Microsphere with λ/A1 = 2.02 × 106 at x = x0 at Various
Times

t (s)
d ln cOH−/dx
(cm−1)

u
(μm/s)

λ/A1
a

(cm−1)
A1
b

(Å2) λc (Å)

20 27.53 1.5 2.02 × 106 10 0.20
200 8.71 0.47 2.02 × 106 102 2.02
2000 2.75 0.15 2.02 × 106 103 20.2

20 000 0.87 0.05 2.02 × 106 104 202.0
aλ/A1 is independent of t.

bAssumed value of area per surface group,
A1, independent of t.

cValue of slip length, λ, implied by the constraint
λ/A1 = 2.02 × 106 and the choice of Al, also independent of t.
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cm−1, which holds for all times t ≥ 12 s in the experiments of
Zheng and Pollack. For the somewhat smaller observed
velocities u ≤ 0.0001 cm/s, this equilibration condition is
satisfied over a broad range of pH at all but the earliest times
(the first several seconds).
General Comments Regarding the Induced Velocity.

If spherical macromolecules exhibit a constant surface density
of carboxyl (or amino) groups and a constant slip length,
regardless of size, then the number of such groups scales as M
∼ R2, so the force scales as F ∼ R2, yet the velocity should scale
as R0 (i.e., u should be independent of R) under the same
conditions of cosolute concentration and gradient.
We now consider microspheres of radius R, bearing carboxyl

groups with average area, Ach, per carboxyl group, hence, M =
4πR2/Ach. We assume that cOH− ≥ 10−7 M, so f ≅ 1.0, and that
csalt ≃ 0, so cOH−/(csalt + cOH−) ≃ 1.0. We also neglect the W
term (0 ≤ W ≤ 2) in eq 33, even though it might equal or
exceed the first term. Hence, the calculated u will be a lower
bound. If Ach = 10−12 cm2 and the sodium hydroxide
concentration exceeds 0.01 M, then W should be less than
0.14, so neglect of the W term in G of eqs 51, 59, and 60 yields
an accurate estimation of u in this case. However, for an
electrolyte concentration, cS ≈ 10−5 M, which is a lower bound
at pH 8.0 in the presence of adventitious CO2, and for any Ach
≤ 10−12 cm2, W should lie between 1.6 and 2.0, unless the
distribution of carboxyl groups is highly non-uniform, which is
most likely the case. In that event, an accurate NLPB
calculation for the actual (presently unknown) distribution of
intrinsic charges would be required for a precise estimation of
W. When W is neglected, the lower bound induced velocity is
given by

η λ= − ∞u kT A c x(2/3)( / )( / )(d ln /d )T P c cch OH , , ,P salt (63)

At T = 293 K, the viscosity of water is η = 0.01 P (cgs) or 0.001
Pa s (mks). Induced velocities are calculated by eq 63 for a
selection of hydroxide gradients in the next section.

■ SPECIFIC PREDICTIONS AND COMPARISONS WITH
EXPERIMENT

Relevant OH− Gradients and Velocities and First
Estimate of λ/Ach. Induced microsphere velocities have been
observed in both stationary18 and temporally evolving salt
gradients.21,22 However, as far as we know, induced micro-
sphere velocities have not been investigated previously in
stationary hydroxide gradients but only in time-dependent
hydroxide gradients that evolve from particular initial
conditions. A diagram of a suitable initial cosolute concen-
tration profile is shown in Figure 3. The initial concentration is
higher in the exterior regions (x < x0 and x > x0) and far lower
in the interior region (−x0 ≤ x ≤ x0). The solutions to the
diffusion equation in regions A (x0 < x ≤ ∞) and B (0 ≤ x ≤
x0) are derived in Appendix C, and are presented in eqs C17
and C18. The gradient, d ln cA(x, t)/dx, for cosolute in region A
is readily found to be

π

=

= + − −

− +

− − −

− − +

−

c x t x c x t c x t x

c c c x x Dt

x x Dt

c c Dt x x Dt

x x Dt

d ln ( , )/d (1/ ( , ))d ( , )/d

{ (( )/2)(erfc[( )/ 4 ]

erfc[( )/ 4 ])}

(( )/(4 ) )(exp[ ( ) /4 ]

exp[ ( ) /4 ])

A A A

A B A 0

0
1

A B
1/2

0
2

0
2

(64)

In the limit x0 ≫ 4Dt, we have erfc[(x0 + x)/(4 + Dt)1/2] → 0
and exp[−(x0 + x)2/4Dt] → 0 for x in the range x0 ≤ x ≤ ∞.
The resulting expressions for cA(x, t), dcA(x, t)/dx, and d ln
cA(x, t)/dx are precisely those expected for an initial step-
function concentration profile in an infinite space with the step
at x = x0, which provides an important check on eq 64.
In the examples treated in this study, the initial concentration

profile is obtained by immersing a gel in a solution. The gel will
occupy region B, where −x0 < x ≤ x0. The gel prevents mixing
by inhibiting convection on its side of the boundary, and
enables the formation of a fairly sharp initial “step” in
concentration. We make use of the fact that diffusion
coefficients of small cosolutes in dilute aqueous gels are
practically the same as in dilute solution.35 In this first example,
we reckon the slope, d ln cOH−(x, t)/dx, at x = x0 for different
times after the immersion event, when the gel (region B) is
immersed in a solution occupying region A (in which extremely
dilute microspheres are suspended). The temperature is T =
293 K, and the diffusion coefficient of NaOH is D = 2.1 × 10−5

cm2/s. It is assumed that cOH− ≥ 10−6 M, so f ≅ 1.0. The gel is
assumed to have no intrinsically charged groups. We assume
that x0 ≫ (4Dt)1/2 for all times considered in this example.
Values of the gradient, ∂ ln cH−/∂x, and the induced velocity, u,
are computed according to eqs 63 and 64 at various times for a
particular choice of the parameter, λ/Ach. For these calculations,
it is assumed that cB ≅ 0 (i.e., cOH− ≅ 0) at t = 0 in the gel. The
value of cA = cOH− at t = 0 in the solution then cancels out of the
results, which are presented in Table 1. All velocities are
computed at x = x0, where the gradient is maximal. By assuming
that λ/Ach = 2.02 × 106 cm−1, a velocity, u = 1.5 μm/s,
comparable to that reported by Zheng and Pollack,23 was
computed for x = x0 at t = 20 s. The variation of u with time,
and also the values of λ implied by different choices of Ach
together with the constraint, λ/Ach = 2.02 × 106 cm−1, are
exhibited in Table 1.
The gradient, ∂ ln cH−/∂x, and u both decline by about 3-fold

for every decade increase in time. The slip lengths, λ = 20.2 and
202 Å, implied by the choices, Ach = 103 and 104 Å2,
respectively, can probably be ruled out as being much too large
for such a rough largely hydrophilic surface. Moreover, there
apparently is no literature precedent for such large Ach values
for carboxylated polymer microspheres. These considerations
suggest that, for the carboxylated microspheres used by Zheng
and Pollack, λ lies in the range 0.2 Å ≤ λ ≤ 2.0 Å and Ach lies in
the range 10 Å2 ≤ Ach ≤ 100 Å2. The latter range appears to be

Figure 3. Cosolute concentration profiles at times 0 and t. The dash-
dot-dash line denotes the initial (t = 0) cosolute profile with
concentration cA in region A (−x0 ≤ x ≤ + x0) and cB in regions B (x <
x0; x > x0). This approximates the actual initial profile, when a slab of
gel with cosolute concentration cA is immersed in a solution with
concentration cB. The solid line denotes the cosolute concentration
profile after the passage of some time t, when the profile is significantly
broadened by diffusion. The cosolute diffusion coefficient is assumed
to be the same in both the gel and the solution, as found by Schantz
and Lauffer.35 Expressions for cA(x, t) and cB(x, t) are derived in
Appendix D.
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consistent with the limited available data for commercial
samples of carboxylated polymer microspheres.
Comparison of Predicted and Observed Microsphere

Trajectories and Second Estimate of λ/Ach. We now
calculate the temporal trajectory for the displacement, Δ(t) ≡
x(t) − x0, of a microsphere from x0 in region A of Figure 2. The
situation is the same as in the previous section, where a non-
ionic gel occupies region B, −x0 ≤ x ≤ −x0, and the charged
microspheres are suspended in region A, −x0 ≤ x < ∞. The
microsphere velocity can be written as u = dx(t)/dt = dΔ(t)/dt
and combined with eqs 59 and 64 to yield a differential
equation for Δ(t)

η λ

π

Δ =

+ − Δ

− + Δ

− Δ

− + Δ

−

t t kT A

c c c t D t

x t Dt

c c Dt t Dt
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d ( )/d (2/3)( / )( / )

{ (( )/2)(erfc[ ( )/ 4 ]
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(( )/(4 ) (exp[( ( )) /4 ]

exp[(2 ( )) /4 ]))
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A B A
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1/2 2

0
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(65)

The initial OH− concentration inside the gel is assumed to be
cB = 10−8 M, which corresponds to pH 6.0, in this example. The
non-ionic poly(vinyl alcohol) gels of Zheng and Pollack23 were
stored in aqueous solutions of pH ∼5.7 prior to immersion in
the microsphere suspension, and pH 6.0 is a reasonable
approximation to that. The OH− concentration of the
suspension of carboxylated microspheres is taken to be cA =
10−6 M (pH 8.0), at which point the carboxyl groups are almost
completely titrated, so f ≅ 1.0, as was assumed in eqs 63 and 65.
As in the previous section, the salt concentration is assumed to
be negligibly small, and the W terms in eqs 31, 50, 51, and 59
are again neglected. When W is neglected, the force on a
microsphere of a given charge is underestimated by a factor of
1.0−3.0, depending upon conditions.
The adopted parameters are T = 293 K, η = 0.01 P (cgs), R =

1.0 × 10−4 cm (1.0 μm), D = DNaOH = 2.1 × 10−5 cm2 s−1, and
λ/Ach = 2.83 × 106 cm−1. If Ach = 50 Å2, then M = 2.51 × 107, λ
= 1.41 Å, and all three values are plausible for the carboxylated
microspheres of Zheng and Pollack.23 The value of x0 was taken
to be 0.025 cm, so that the gel “diameter” is 2x0 = 0.05 cm, as
stated by Zheng and Pollack. Δ(t) was assumed to be 0 at time
t = 3 s, in order to avoid the singular behavior at x = x0, when t
= 0. Then, eq 65 was solved numerically for Δ(t) over the
intervals from t = 3 to 300 s and from t = 3 to 7200 s by using
the Mathematica NDSolve command. The results are displayed
in Figure 4.
The displacement, Δ(t), is about 100 μm at t = 300 s. This

value was reported by Zheng and Pollack23 for their
experimental model A, which corresponds to the initial
concentration profile in Figure 3. Indeed, the value of λ/Ach
= 2.83 × 106 cm−1 was determined (by trial and error) to match
this reported result. From 300 to 1800 s, Δ(t) rises a bit further
to 120 μm, but the rate of change of Δ(t) is very slight at longer
times. Such behavior might suggest to an unwary observer that
the phenomenon of microsphere exclusion from the gel surface
has reached a true equilibrium but that conclusion would be
entirely incorrect. The contribution of microsphere diffusion to
eventually restore equilibrium (after the d ln cOH−/dx gradient
has died away) has been omitted in our calculations, which
span 7200 s (2 h). The microsphere diffusion coefficient is Ds =
kT/6πηR = 2.5 × 10−9 cm2 s−1, and the time for a microsphere
diffuse to a root-mean-squared displacement, d = 0.012 cm

(120 μm), is t = ⟨(0.012)2⟩/2D = 33 490 s, which is about 9.3
h. This is ∼19 times longer than the ∼1800 s (0.5 h) required
for the OH− gradient force to move the microspheres from Δ =
0 to Δ = 0.012 cm (120 μm), and justifies the neglect of
microsphere diffusion up to that point. The estimated
backfilling time of ∼9.3 h is consistent with the observation
of Zheng and Pollack23 that “the exclusion zone persisted easily
for hours”.
It is unfortunate that a more determined effort was not made

to ascertain whether the “exclusion zones” were truly
equilibrium phenomena, or instead were long-lived non-
equilibrium transients. In order to be certain that long-lived
concentration gradients are not involved, it would be necessary
to observe the system for times that are several-fold greater
than the 9.3 h noted above in the case of non-ionic poly(vinyl
alcohol) gels. In the case of ionic gels, the situation is more
complex, because ion exchange and Donnan effects may
influence both the magnitude and evolution of the OH− or H+

gradients, as discussed in paper II (10.1021/jp302589y).37 In
such cases, still longer waiting times, sufficient for equilibration
of the ion exchange process, will be required to achieve
equilibrium.
The trajectories of the same microspheres beginning with

different initial displacements, Δ(0) = 0, 60, 120, 180, and 240
μm, at time t = 3 s were also computed, and the results are
presented in Figure 5. The steepness of these trajectories
declines somewhat with increasing Δ(0), and the net
displacements (Δ(300) − Δ(0)) from the different starting
positions at t = 300 s are 103, 95, 90, 80, and 75 μm for,
respectively, Δ(0) = 0, 60, 120, 180, and 240 μm. It is perhaps
surprising that, despite such different starting positions, the
differences in net displacement along each trajectory at t = 300
s are so modest. This is due to the fact that the force is
proportional to d ln cOH− /dx, rather than simply to dcOH−/dx.
Zheng and Pollack23 noted that microspheres at very different

Figure 4.Microsphere displacement, Δ(t) ≡ x(t) − x0, in a temporally
evolving cosolute concentration gradient vs time t after immersion of
gel containing cA = 10−8 M NaOH in a solution containing 10−6 M
NaOH. The trajectory begins at t = 3 s with the microsphere at the gel
surface at x0. The trajectory is calculated by numerical integration of eq
65 with T = 293 K, η = 0.01 P, D = 2.1 × 10−5 cm2/s, and λ/A1 = 2.83
× 106 cm−1. (a) Trajectory from t = 3 to 300 s; (b) trajectory from t =
3 to 7200 s.
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initial positions, ranging from ∼0 to 250 μm from the gel
surface, exhibited surprisingly similar trajectories of their net
displacements (Δ(t) − Δ(0)). That observation was used to
argue that a pH gradient could not be responsible for the
microsphere translations leading to formation of the exclusion
zone. However, the computed trajectories in Figures 3 and 4
demonstrate clearly that a pH gradient can qualitatively, and
almost quantitatively, reproduce the observed trajectories of
microspheres with a plausible (assumed) value of λ/Ach for a
whole range of starting positions from 0 to 240 μm from the gel
surface. The modest difference between the λ/Ach = 2.83 × 106

cm−1 required to yield the observed Δ(300) = 100 μm and the
λ/Ach = 2.02 × 106 cm−1 required to yield u = 1.5 μm/s at t =
20 s may be due to an error in our estimated time for which the
reported value, u = 1.5, applies. Moreover, stirring of the
solution during immersion of the gel will slightly broaden the
initial step function in base concentration, which in turn will
diminish the chemotactic force at x0 at short times. That will
cause a relatively larger reduction in velocity and displacement
at short times than at much longer times.
Estimated Values of λ for Microspheres and BSA. The

value λ/Ach = 2.83 × 106 cm−1 was obtained by neglecting the
W term in eqs 51, 59, and 60. Under the prevailing low ionic
strength conditions, it is likely that Γ1S(P(COO

−)N) ∼ 0 and
∂ΓS(P(COO

−)N)/∂N ∼ 0, in which caseW ∼ 2.0. In this event,
the value of G would be approximately tripled, and the value of
λ/Ach required to yield the same trajectory would be reduced by
0.33-fold to λ/Ach = 9.4 × 105 cm−1. If Ach = 50 Å2/group, as
assumed before, then λ = 0.47 Å.
Although estimates of λ for other charged polymer

microspheres are lacking, an estimate of λ for BSA in a pH
2.2 phosphate buffer, where the protein has 92 protonic
charges, is obtained in Appendix D. There the present theory is
applied to analyze the measured cross-diffusion coefficients, D31
and D32, of BSA (component 3) with, respectively, the H3PO4
(component 1) and KH2PO4 (component 2) of a two-
component buffer.38 Fitted values of the two adjustable
parameters were W = 0.59 (+0.20, −0.21) and λ = 0.72 ±
0.28 Å, which is roughly comparable to the λ estimated for the
microspheres. This finding suggests that the slip lengths for the
charged microsphere and charged BSA surfaces do not differ
greatly. It is perhaps not too surprising that the surface of a
glassy copolymer of styrene and a short chain monoacid, such
as acrylic or methacrylic acid, in the microspheres and a folded

peptide chain in a globular protein have roughly comparable
slip lengths. This comparison may lend some credence to the
estimates of λ/Ach and λ for the microspheres.

Comparisons of the Theory with Other Observations
Involving Non-Ionic Gels. (1) When the initial OH−

concentration is the same in both the gel and microsphere
suspension, so cA = cB, one has d ln cOH−/dx = 0, and the present
theory predicts that dΔ(t)/dt = 0. In this case, there should be
no net microsphere motion and no “exclusion zone”. Zheng
and Pollack23 varied the pH of the microsphere suspension, and
found that no exclusion zone was formed when its pH matched
that of the gel (5.7). This was true for both carboxylated
(negatively charged) and amidinated (positively charged)
microspheres.
(2) When the initial OH− concentration cA in a carboxylated

microsphere suspension is less than that of the gel (cB = 5.0 ×
10−9 M (pH 5.7)), then d ln cOH−/dx is negative, and the force
and induced microsphere velocity should be directed inward
toward the gel. However, carboxylated microspheres have lost
half their charge (i.e., f = 0.5) by pH ∼6, and will be even
further discharged at lower pH, so f declines and the magnitude
of the induced inward velocity may be rather small, and
continue to fall with decreasing cA. Thus, the prediction for
suspension pH < 5.7 is for either slow inward motion and
consequent accumulation of carboxylated microspheres at the
gel surface or no perceptible directed motion. Unfortunately,
no results for this situation (cA < cB) were reported, so this
prediction remains untested.
(3) When the initial OH− concentration in the gel is very

much less than that in a carboxylated microsphere suspension,
so cB ≪ cA, the present theory predicts that d ln cOH−/dx is
practically independent of both cA and cB, provided that the
cOH− experienced by the microspheres is sufficiently great (cOH−

≥ 10−6 M (pH 8.0)) to maintain f ≅ 1.0. Thus, this theory
predicts that the temporal trajectory of Δ(t), and “exclusion
zone” size at any given time t, should nearly be independent of
the initial pH of the microsphere suspension for any pH at or
above pH 8.0. In fact, the data in Figure 10 of Zheng and
Pollack23 show a constant “exclusion zone” size from pH ∼7.8
to ∼10.3 for carboxylated spheres of three different sizes.
However, an abrupt increase in “exclusion zone” size was
observed when the pH of the microsphere suspension was
increased above pH 11.0. This increase is likely due to the fact
that −OH groups of the PVA gel react with OH− above pH
11.0 to become ionized to negatively charged −O− groups).
This process consumes OH− from the microsphere suspension
until the gel is uniformly ionized to an extent that depends
upon the cOH− of the microsphere suspension, the concen-
tration, c0, of titratable −OH groups in the gel, and the shape of
their collective titration curve. The extent of titration of −OH
groups of the gel rises with increasing cOH− of the microsphere
suspension. Thus, for pH ≳ 11.0, consumption (binding) of
OH− by the gel acts to enhance the diffusive transport of OH−

from the microsphere suspension into the gel. This in turn
leads to a larger OH− deficit in the suspension near the gel, a
greater outward gradient, d ln cOH−/dx, and a larger exclusion
zone, as observed by Zheng and Pollack.23

(4) For microspheres with the same area per −COOH
group, Ach, and slip length, λ, the induced velocity at a given
time and position in the gradient is predicted to be
independent of microsphere radius, R, so the exclusion zone
size at any particular time should also be independent of R. The
observations of Zheng and Pollack follow this prediction in the

Figure 5. Microsphere displacements Δ(t) in a temporally evolving
cosolute concentration gradient vs time t after immersion of gel
containing containing cA = 10−8 M NaOH in a solution containing
10−6 M NaOH. The trajectories are computed using the same
parameters as in Figure 4. These trajectories all begin at the same time,
t = 3 s, but at different initial displacements, Δ(0) = x(0) − x0, which
are from bottom to top: Δ(0) = 0 μm; Δ(0) = 60 μm; Δ(0) = 120
μm; Δ(0) = 180 μm; Δ(0) = 240 μm. The lowermost curve is that in
Figure 4a.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp302587d | J. Phys. Chem. B 2013, 117, 7626−76527641



case of carboxylated microspheres with R = 0.45 and 1.0 μm,
but similar microspheres with R = 4.0 μm exhibit an exclusion
zone size that is 2.4- to 2.8-fold larger than the others in the pH
range 8.0−10.5. This deviation from predicted behavior may
result from a variation in Ach or λ, or both with sphere size.
Surface roughness would be expected to vary, if at all, inversely
with R, which would lead to either the same or increased λ,
velocity, and exclusion zone size with increasing R, in
qualitatitve agreement with the experiments. It is also possible
that A1 is for some reason smaller for the microspheres with
larger radii. In the case of amidinated spheres with R = 0.5 and
1.5 μm, the exclusion zone sizes are similar at pH 4.5 and 4.0
but diverge at lower pH with the larger spheres being more
excluded. Conceivably, this difference is due to greater
availability in the larger spheres of subsurface amidine sites,
which are believed by at least one supplier to occur and to
become protonated at low pH.
(5) When microspheres bearing protonated amidine groups

on their surfaces are employed, eqs 64 and 65 again apply,
except that D is now taken to be the diffusion coefficient for
HCl. Provided that the cH+ concentration of the microsphere
suspension is much greater than that (10−5.7 M) in the gel, the
resulting trajectories are predicted to be qualitatively similar to
those for carboxylated spheres with cOH− much greater than that
(10−8.3 M) in the gel, which were described above. This
prediction matches the observations of Zheng and Pollack.23

(6) When the initial H+ concentration, cA, of an amidinated
microsphere suspension is less than that of the gel (cA = 2 ×
10−6 M (pH 5.7)), then d ln cH+/dx is negative, and the force
and induced microsphere velocity should be directed inward
toward the gel. The pKd of a protonated amidine is ∼12.4, so
amidinated spheres should be nearly fully charged up to pH ∼
10.0. Thus, when the pH of the amidinated microsphere
suspension lies in the range 7.0 to ∼10.0, the microspheres are
predicted to move toward the gel surface, and to accumulate in
concentrated layers around the gel (if it is impenetrable to the
microspheres). Experimental results for this situation were not
reported, so this prediction remains untested.
The predictions for non-ionic gels in the absence of salt are

simpler and more direct than those for charged gels. Hence, the
predicted attraction or non-exclusion of carboxylated spheres in
suspensions with pH < 5.7, and the predicted attraction of
amidinated spheres in suspensions with 7.0 ≲ pH ≲ 10.0, when
the non-ionic PVA gel is pre-equilibrated with pH 5.7 distilled
water, should allow rather direct experimental tests of the
present molecular chemotaxis theory.
The Effect of Salt on Exclusion Zone Size. The total

force on a microsphere bearing carboxyl groups in the presence
of salt is given by eqs 33−35. The effect of including salt in the
microsphere suspension (but not in the gel) is to decrease the
factors cOH−/(csalt + cOH−) and W in eq 31 but to increase csalt/
(csalt + cOH−) while decreasing W in eq 32. If d ln csalt/dx ≈ d ln
cOH−/dx, as would be expected in this case, then the opposing
effects of salt on cOH−/(csalt + cOH−) and on csalt/(csalt + cOH−)
effectively cancel, and the primary effect of salt is simply to
reduce W. Thus, a decrease in the total force is expected, but
even ifW were to decrease all the way to zero, the 1 term in the
curly braces of eq 31 would remain. Consequently, this theory
predicts a moderate relative decrease in size of the exclusion
zone (at a given time) around a non-ionic gel upon addition of
salt to the microsphere suspension. This prediction agrees with
the observations of Zheng and Pollack (cf. their Figure 7).23

Convection Induced by Chemotactic Forces. We
undertook initial experiments to investigate microsphere
motions in gradients of more macroscopic extent than those
prevailing in the experiments of Pollack and co-workers.
Straight channels with poly(dimethylsiloxane) (PDMS) side-
walls and glass bottoms that were 2 mm wide, 4 mm deep, and
1 cm long were filled to a depth of 2 mm with a homogeneous
suspension containing both 1 μm diameter carboxyl micro-
spheres and 3 μm diameter amine microspheres. The gradient
was formed by placing a cylindrical agarose gel (4 mm high, 3
mm in diameter), which had been equilibrated with a particular
concentration of NaOH (e.g., 0.1, 0.01, or 0.001 M), into a well
at one end of the channel and a corresponding cylindrical gel
that had been equilibrated with the same concentration of HCl
into a well at the other. Microsphere motion was observed
through an inverted microscope. Invariably, any motion of the
microspheres relative to the fluid was eventually overwhelmed
by convection of the visible bottom layer of the solution toward
the acidic end of the channel. Finally, we realized that such
behavior should have been expected for the following reason.
The chemotactic forces in eqs 31−35 are exerted by a

solution exhibiting a pH and/or salt gradient upon a
macromolecule bearing acid or base groups. According to
Newton’s third law, the macromolecule exerts an equal and
opposite force on the solution. If the ionized microspheres in
such a solution were fixed, the solution would then move in the
opposite direction to that taken by free microspheres. The glass
bottom of the channel bears ionized silanol groups (except at
low pH), and consequently would be expected to exert a force
on any solution exhibiting a pH gradient so as to induce
convection of its bottom layer toward the acidic end of the
channel.
In order to develop a simple approximate theory of

chemotactically induced flow, we considered a channel with a
uniform rectangular cross section, whose length far exceeds its
rather shallow depth. The flat horizontal bottom of the channel
is glass bearing many acid silanol groups, but the vertical side
walls of the channel are plastic and should bear no ionizable
groups, and the top of the channel is uncovered and exposed to
air. When the channel is filled to a depth z0 with solution
containing a positive gradient of NaOH and/or salt in the +x
direction along the channel axis, the solution will experience a
force in the −x direction that originates from its interaction
with the channel bottom. The resulting chemotactically
induced convection is analyzed in an approximate way in
Appendix E. Important simplifying assumptions are invoked. In
particular, it is assumed that (i) a quasi-steady-state flow exists
at early (but not too early) times before the induced non-
uniform flow (due to non-uniform surface ionization)
significantly alters the initially uniform solution depth and
gradient of ln cNaOH along the channel axis; (ii) the sidewalls of
the channel exhibit slip boundary conditions, so there is no
variation of the x-component of the velocity in a direction (y)
perpendicular to the channel axis; and (iii) the range of
surface−solution contact interactions is 1/h ∼ 10−9 cm. Both
no slip (stick) and partial slip boundary conditions at the
bottom glass−solution interface were considered, but the
former yielded insignificant velocities, 0 ≥ vx ≥ −1.97 × 10−2

μm/s, and will not be discussed further. Values of the slip
length (λ) at the water−glass interface (in the case of partial
slip) were taken to be λ = 1.0,62 26,61 or 57 nm.61 The surface
density of ionized silanol groups is reckoned for two particular
conditions (cNaOH = 10−4 and 10−5 M) according to the method
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of Behrens and Grier.59 For a gradient, d ln cNaOH/dx = 18.4
cm−1, equivalent to a four decade change over 0.5 cm, the
computed force on the solution per unit area of glass−water
interface was reckoned (with W = 0) to be −kTfσG = −19.7
dyn cm−2, at the position in the channel where cNaOH = 10−4 M,
and −kTfσG = −4.94 dyn cm−2, at the position where cNaOH =
10−5 M. For the former concentration (cNaOH = 10−4 M), the
induced fluid velocity (except for a very thin region of depth
∼1/h = 0.01 nm near the glass bottom) was estimated to be
vx(z) ≃ −2.0 μm/s for λ = 1.0 nm and vx(z) ≃ −51 or −112
μm/s for, respectively, λ = 26 or 57 nm. The fluid velocity,
vx(z), is independent of z, except extremely close to the solid−
solution interface, so is very nearly plug flow. For the latter
concentration (cNaOH = 10−5 M NaOH), the induced fluid
velocity was estimated to be vx(z) ≃ −0.494 μm/s for λ = 1.0
nm and vx(z) ≃ −12.8 or −28.2 μm/s for, respectively, λ = 26
or 57 nm. Even in the event that λ = 1.0 nm, these predicted
velocities are significant, and should be observable under the
right conditions. We emphasize that these are not steady-state
velocities, because the variation of the force per unit area and
flow rate along the channel will soon lead to fluid pile-up, an
associated pressure gradient along the channel that at least
partially opposes the chemotactic force responsible for the flow,
and eventually a counterflow in an upper layer. A complete
description of this phenomenon would require a numerical
solution of the combined fluid flow and NaOH diffusion
equations, together with a simultaneous evaluation of the
surface charge density and the total force (per unit area)
exerted on the solution by each element of the glass surface
taking into account both the NaOH binding and electrostatic
contributions at each time step. Such a calculation is not
undertaken here, in part because some parameters, such as Ach
and λ, are not sufficiently well-known and in part because other
mechanisms may also be simultaneously driving convection, as
described below.
Convection Induced by a Gradient of Surface

Tension. Chemotactically induced convection can be regarded
as a particular case of a general phenomenon, wherein a
tangential traction is exerted on a fluid surface element by a
gradient of the surface tension (surface free energy per unit
area), and must be balanced by a viscous (shear) traction
exerted on the same surface element by a velocity gradient of
the adjacent fluid, which in turn requires convection. So-called
Marangoni convection is induced by a gradient of the surface
tension at an interface between two fluids, such as an aqueous
solution and air, and differs from flow at a solid−liquid interface
in the following way. The viscosity of the solid is effectively
infinite, and only very slight slippage of the first fluid layer
relative to the solid surface is possible in accord with the partial
slip coundary condition, so the resulting fluid flow near the
interface is effectively plug flow with little or no gradient except
between the solid and the first fluid layer. This results in a
rather small flow velocity per unit traction. In contrast, for an
aqueous solution−air interface, there is virtually no counter-
balancing traction on the air side of the interface so a large
velocity gradient of the adjacent solution, which is generated by
a rapid surface flow, is required to provide the necessary
traction to counter the surface tension gradient. A Marangoni
convection cell involving a horizontal air−solution interface
typically exhibits rapid flow in the direction of the surface
tension gradient in a very thin layer near the interface, and a
much slower flow in the opposite direction at a somewhat
greater depth with the velocity trending to zero at the bottom

and sidewalls.63 Of course, a downward vertical component of
the flow at the high end of the surface tension gradient and an
upward vertical component of the flow at the low end of the
gradient are required to connect the top and bottom horizontal
flows. When ∂ ln cNaOH/∂x = −18.4 cm−1, the surface tension
gradient, or equivalently the traction experienced by the air−
solution interface, at the point where cOH− = 10−4 M is ∂γ/∂x =
−3.0 × 10−3 dyn/cm2, which is ∼1.5 × 10−4-fold smaller than
that (−kTfσG = −19.7 dyn/cm2) due to the chemotactic force
on the glass-bottom surface, and at the point where cOH− = 10−5

M, the traction is ∂γ/∂x = −3.0 × 10−4 dyn/cm2, which is 6.1 ×
10−5-fold smaller than that (−kTfσG = −4.94 dyn/cm2) due to
the chemotactic force on the glass-bottom surface. Such small
tractions might render the flow due to a Marangoni convection
cell in the region below the thin upper layer negligibly small
compared to the chemotactic flow in that same region. The
surface tension and its gradient at the putatively non-ionic
hydrophobic sidewall−solution interfaces should be very
roughly comparable to the same quantities at the air−water
interface. However, owing to the partial slip boundary
condition in this case, the induced flow velocities should be
far (≤10−3-fold) smaller than those induced by the far greater
chemotactic forces exerted on the solution by the glass bottom.
Thus, for the very dilute ionic solutions and gradients of ln cOH−

considered here, any contribution of the hydrophobic sidewalls
to generate convective flow should be negligible compared to
that of the glass bottom. Because γ at the air−solution interface
increases with decreasing cHCl and with increasing cNaOH,

64 the
sign of ∂γ/∂x at the air−water interface of a channel with an
NaOH reservoir at its small-x end and an HCl reservoir at its
large-x end is everywhere negative, and its associated
Marangoni flow of the top surface proceeds from the acidic
end toward its basic end, whereas its counterflow below the
thin surface layer proceeds in the opposite direction toward the
acidic end of the channel. Chemotactically induced flow in the
bottom layer is also directed toward the acidic end of the
channel, whereas its counterflow proceeds toward the basic end
in the upper layer(s). Thus, in principle, convection cells driven
by Marangoni flow at the air−solution interface and chemo-
tactically induced flow induced by the glass bottom could
reinforce one another, whenever those two flows have
comparable strength. Any convection cell with a sufficient
fluid velocity toward the acidic end of the channel in the visible
lower layer(s) would account for the observed convection in
the glass-bottom channels. However, experiments on channels
with putatively non-ionic hydrophobic bottoms and sidewalls in
the next section suggest that Marangoni tractions in these dilute
ionic solutions are too small to cause perceptible convection by
themselves.

Preliminary Experiments. Experiments were undertaken
to observe microsphere motions in open channels with non-
ionic hydrophobic PDMS (poly(dimethyl siloxane) bottom and
sidewall surfaces, which were supposed not to cause chemo-
tactically induced convection. Channel dimensions, cylindrical
wells, and gel plugs were the same as for the previously
described glass-bottom channels. The microsphere solutions
contained either 100% or 50 v/v % D2O to render the
microspheres more nearly neutrally buoyant. Six experiments
were performed, each using a separate chip upon which a single
channel was fabricated. In one experiment, the microsphere
suspension was replaced by a solution of pH indicator, phenol
red (pK = 8.0). A color boundary appeared midway along the
channel after 3−5 min and persisted for 20 min without
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moving, which indicates an absence of significant convection in
the visible bottom layer in that channel. In none of these
experiments were microspheres observed to be all convected
toward either end, in contrast to the convection toward the
acidic end that was invariably observed in glass-bottom
channels. These findings suggest that, by itself, Marangoni
convection in these solutions is too weak to induce significant
flow in the visible bottom layer, and that the convection
observed earlier in glass-bottom channels was almost entirely
due to chemotactically induced flow. The results pertaining to
microsphere chemotaxis were encouraging in the sense that the
predicted preferential accumulation of carboxyl microspheres
toward the basic end of the channel and amino microspheres
toward the acidic end was clearly observed in two of the five
trials. However, in the other three trials, no significant
segregation or directed microsphere motion was apparent and
only Brownian motion was observed. The irreproducibility of
these experiments, which were each performed using a different
channel, likely arises at least in part from unanticipated
ionizable silanol groups on the PDMS surfaces due to
insufficient recovery of hydrophobicity (by surface reconstruc-
tion) after oxygen plasma treatment (for bonding purposes)
during the fabrication process. Undetected non-uniform
convection due to non-uniform surface charge, fluid pile-up,
and backflow at early times in channels with unanticipated ionic
surfaces could potentially stir the channel contents sufficiently
to greatly diminish the gradients of ln cOH− and ln cOH+ in such
channels.
Experiments to investigate a pH-gradient driven convection

pump in an open channel of circular topology, specifically a
horizontal rectangular loop, were also undertaken. All bottom
and side surfaces were intended to be non-ionic hydrophobic
PDMS, except along one side of the rectangle, which had a glass
sidewall in addition to a basic gel plug in a corner well at one of
its ends and an acidic gel plug in a corner well at its other.
Convection was probed by suspended fluorescent micro-
spheres. Again, results were encouraging in the sense that the
predicted circular flow around all four sides of the rectangular
loop (in a direction to move fluid from the basic toward the
acidic plug in the side with the glass wall) was observed in one
of the three trials. However, no significant flow was apparent in
the other two trials, and only Brownian motion was observed.
As before, the irreproducibility of these experiments, which
were each performed on a different channel, likely stems from
unanticipated silanol groups on the PDMS surfaces. Such
groups would generate flow toward the acidic plug also in the
three sides of the channel loop without the glass wall, and could
thereby significantly quench the circular flow generated by the
side with the glass wall.
These irreproducibility problems must be resolved in future

studies in order to provide reliable tests of the molecular
chemotaxis theory.

■ DISCUSSION
The present theory of the chemotactic force on a single
macromolecule suspended in a gradient of dilute small cosolute
molecules is based on the variation of its standard state
chemical potential with increasing chemical potential of the
cosolute species. This slope defines a non-electrostatic
preferential interaction coefficient, which is evaluated via
Kirkwood−Buff theory, and expressed simply in terms of
excluded volume and cosolute−solvent exchange interactions.
This preferential interaction coefficient is also evaluated via

solution thermodynamics for both non-ionized and electro-
neutral ionized cosolutes, when the dominant interaction is
binding to specific sites on the macromolecule. The modulation
of the electrostatic free energy of a charged macromolecule by a
monovalent ionized cosolute (electrolyte) is also formally taken
into account via an electrostatic preferential interaction
coefficient. Chemotactic forces due to thermodynamic binding
of NaOH to neutral surface acid groups (carboxyl, silanol) or
binding of HCl to neutral surface base groups (amidine, amine)
in prevailing gradients of, respectively, ln cNaOH or ln cHCl are
treated quantitatively. Such ultrashort-range forces generate
surface tractions, and the induced velocities are reckoned by a
novel hydrodynamic calculation with a partial slip boundary
condition. The velocity is proportional to the (unknown) ratio,
λ/Ach, of slip length to area per surface group. Trajectories are
then computed for microspheres with an optimally adjusted
value of λ/Ach in temporally evolving cosolute gradients.
Numerous incisive tests of the present theory of molecular

chemotaxis are conducted by comparing its predictions with
experiments of Zheng and Pollack pertaining to exclusion of
microspheres by non-ionic gels. The present theory accounts
qualitatively for essentially all observations pertaining to
carboxyl, amidine, and amine microspheres near non-ionic
gels. With a single optimally adjusted parameter, λ/Ach, it
accounts quantitatively for many of those same observations. A
plausible estimate of Ach yields a λ-value for the microspheres
which is comparable to that obtained for BSA by fitting the
present macromolecular chemotaxis theory to two reported
cross-diffusion coefficients between BSA and two buffer
components, as described in Appendix E. The present theory
correctly predicts neither repulsion nor attraction of carboxyl
microspheres, when the internal cOH− of the gel matches that of
its surrounding solution. It likewise predicts correctly that
microspheres with amine or amidine groups experience neither
repulsion nor attraction, when the internal cH+ of the gel
matches that of its surrounding solution. These comparisons
with experiment strongly support the present theory of
molecular chemotaxis. Verification of the predicted attraction
of carboxylated or sulfated microspheres, when the cOH− of the
suspension lies below that of the non-ionic gel, and the
predicted attraction of amino or amidinated microspheres,
when the cH+ of the suspension lies below that of the non-ionic
gel, would flatly contradict any notion that microsphere-
excluding long-range ordered water surrounds the gels under
such conditions, and would further support the present theory
of macromolecular chemotaxis.
Numerous other observations of the Pollack group pertaining

to interfaces of ionic gels and ionomers with aqueous solutions
are analyzed in a subsequent paper II (10.1021/jp302589y).22

Further quantitative testing of the present chemotaxis theory
will require additional experiments under conditions where the
gradients of ln cOH

− (or ln cOH
+) and ln csalt can be

independently controlled and/or verified, and will require
firm experimental estimates of Ach for the acidic or basic groups
on the microsphere surfaces. In addition, detailed NLPB
calculations ofW (cf. eq 29) will likely be required. Moreover, a
complete quantitative test will require independent measure-
ment of λ, which may prove challenging.
The present theory predicts that a solution with a gradient of

cOH− in contact with a smooth glass surface should experience a
chemotatic force in a direction opposite to the gradient, so as to
place solution with a higher cOH− in contact with any given
patch of surface and thereby lower its total free energy. This
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can be regarded as a kind of Gibbs−Marangoni effect arising
from a gradient of the surface tension at a fluid−solid interface,
which induces convection of the fluid phase, whenever partial
slip prevails. The chemotactic force is predicted to induce
convection of the solution in the direction of lower cOH−. This
was apparently manifested in our preliminary experiments by
persistent convection of the visible bottom layer toward the
acid gel plug in straight glass-bottom channels. Replacing glass
bottoms with PDMS bottoms evidently reduced convection of
the visible bottom layer to imperceptible levels.
Possible Manifestations and Uses of Macromolecular

Chemotaxis. A. Chemotactic Motion of Cells without
Swimming Apparatus. Cell membranes contain both
phosphate and carboxylate groups, which can be regarded as
neutral acid groups that have bound an OH−, and retained its
charge and also its cation (e.g., Na+) as a counterion. Thus, a
cell in a gradient of OH− should experience a chemotactic
force, and acquire an induced velocity in the direction of greater
OH− concentration. Provided that a cell’s typically acidic waste
products are not excreted in a spherically symmetric plume, the
cell will generally experience an OH− gradient and a
chemotactic force to move it away from its waste products
toward a region of greater OH− concentration. Thus, even a
cell lacking cilia, flagellae, or other swimming apparatus is able
to move so as to escape its own waste products. Such
chemotactic motion may have been important during certain
stages of evolution of life on earth, and is conceivably still
important for some organisms, and possibly also some
organelles.
B. Moving Red Blood Cells through Capillary Beds. Sites

that bind ligands in the interior of a cell, as well as those on its
surface, may contribute to its chemotaxis, provided that ligand
transport from the surface to the interior binding sites is
sufficiently rapid. In that case, the interior sites simply increase
the effective surface density of sites, 1/A1. Chemotactic forces
due to binding a single kind of ligand provide no net advantage
to cells (e.g., red blood cells) or macromolecules that are used
to shuttle ligands from a region of high to a region of low ligand
concentration. Because the force is always directed toward a
region of high ligand concentration, it opposes the motion
toward the low concentration region and provides no net
advantage over a full shuttle cycle. In the case of O2 transport,
this problem is “solved” by enabling the hemoglobin and red
blood cells to bind a metabolic product (H+ + HCO3

−), as well
as O2. The numbers of (H+ + HCO3

−) and O2 binding sites are
identical. Because the chemotactic force generally increases
with increasing saturation of the binding sites, the chemotactic
force due to O2 binding (for a given O2 gradient) is greater in
the capillaries of the lung, and lower in those of working muscle
tissue, whereas the force due to (H+ + HCO3

−) binding is
greater in the capillaries of working muscle tissue and lower in
those of the lung. In working muscle, there is a positive gradient
of (H+ + HCO3

−) and a negative gradient of O2 across the
capillary bed from the arterial to the venous side, so the
expected dominant (H+ + HCO3

−) chemotactic force in this
tissue assists or directs the migration of red blood cells across
the capillary bed in the proper direction (i.e., from arterial to
venous). In the lung, there is a positive gradient of O2 and
negative gradient of (H+ + HCO3

−) across the capillary bed
from the arterial to the venous side, so the expected dominant
O2 chemotactic force in this tissue assists or directs the
migration of red blood cells across the capillary bed in the
proper direction (i.e., from arterial to venous). Whether such

chemotaxis is significant in comparison to pressure-induced
flow through the capillary bed is presently unknown, but this
possibility merits further investigation.

C. Controlling the Force on DNAs Moving through
Nanopores in Membranes. In studies of the passage of either
single- or double-strand DNAs and RNAs through pores
embedded in membranes, electric fields are typically used to
drive the filament through the pore. Often the objective is to
analyze the electric current variation as each base of a single-
strand DNA passes the main constriction in the pore.65 In some
cases, when the trans-membrane voltage is sufficiently high to
produce readily detectable differences in current between each
different kind of base, the DNA passes through the pore much
too quickly. Hence, a means of retarding the rate of passage of
the DNA has been sought.65 By including a binding species,
such as OH−, on the initial side of the membrane, the net force
on the DNA could be varied. The basic idea is that the free
energy of a phosphate group is lower in the compartment with
the greatest concentration of OH− (and its counterions). The
amount of that free energy lowering divided by the distance, dP,
between phosphate groups is the force pulling the DNA toward
the compartment of greatest OH− concentration. The chemo-
tactic force pulling the DNA toward the initial side can be
expressed as
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0 ( f) is the difference in standard state
chemical potential per phosphate between the filament in the
initial solution and that in the final solution, (∂μP1

0 /∂OH−)T,P,cP∞ =
(1.0)f is the slope of μP1

0 with respect to μOH− (cf. eq 28 with M
= 1), and ΔμOH− = kT ln[cOH−(i)/cOH−( f)] is the difference in
chemical potential of OH− between the final and initial
solutions. For an assumed distance, dP ≃ 7 Å, between bases, f =
1.0, and a 10-fold ratio of OH− concentrations, the predicted
retarding force is F ≃ 13 pN. This could easily be varied by
several-fold in either direction by adjusting the OH−

concentrations on either side of the membrane.
D. Chemotactically Induced Convection. A chemotactic

fluid pump could have potentially useful microfluidic
applications, when ultraslow flow rates are desired. A
chemotactically driven rotary motor could also be envisioned,
but that lies beyond the scope of the present work.

E. Possible Role of Chemotaxis in Geology. Chemotactic
forces may play a modest role in certain geochemical processes,
such as transport of suspended charged particles in water with
gradients of OH− and or salt, or percolation of water with such
gradients through porous rock or sands that have charged
surfaces.22 Particularly likely places for such processes might be
estuarine environments or the aerobic−anaerobic boundary in
damp soil, where significant gradients of salt and pH commonly
prevail.

F. Possible Use in Fabrication of Nanostructured
Materials. Gradients of ln cOH− or ln cOH+ could be used to
attract and densify, respectively, carboxyl and amidine micro-
spheres, so as to produce small crystalline arrays. We think that
this phenomenon has already been demonstrated inadvertently
by the Pollack group,29 as will be discussed in the subsequent
paper II (10.1021/jp302589y). The formation of crystalline
arrays of charged (nearly) cylindrical viruses and mixed arrays
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of charged species of different shape could also be facilitated in
the same manner.
Once the significance of macromolecular chemotaxis of

charged macromolecules, colloids, organelles, and cells is
recognized, its recorded manifestations and uses are likely to
multiply rapidly.

■ APPENDIX A. EVALUATION OF THE EXCHANGE
REACTION CONTRIBUTION

The mean density function for a cosolute center at position rj in
the jth site on the macromolecule is defined by Pj

3(r) = ⟨δ(r −
rj)⟩, which depends only upon the distance, r = |r|, from the
central atom of the macromolecule and should be peaked near
the distance r = ⟨|r|⟩ = ⟨|rj|⟩. The averages are taken first over
the positions and configurations (shapes plus orientations in
this section) of all 1-molecules and of all other 3-molecules
outside the site, then over all positions, rj, and configurations of
the cosolute in the site and over all configurations and
orientations of the macromolecule. This density function is
automatically normalized so that ∫ Vd

3rPj
(3)(r) = 1.0 for the jth

(and every other) site.
The mean density function for the centers of those 1-

molecules that occupy the jth site, when the cosolute is absent,
is defined as follows. First, the center of a 3-molecule with fixed
configuration is placed at rj in the jth site of a 2-molecule with a
fixed position and configuration. The density of centers of all η1
1-molecules in the solution (ρ1(r) = δ∑ −η

= r r( )1
11 ) is then

averaged over all positions and configurations of those same 1-
molecules and of all other 3-molecules. This ρ1(r) practically
vanishes over an excluded volume, V(rj, ξ, ζ), that depends
upon the particular rj and configurations ξ and ζ of the fixed 2-
and 3-molecules, respectively. The quantity V(rj, ξ, ζ) really
defines the site for any particular choice of rj, ξ, and ζ. Now, the
3-molecule is removed (by excluding all states wherein the
center of a 3-molecule lies within V(rj, ξ, ζ)), but the
configuration of the 2-molecule is held fixed at ξ, and the
solution is allowed to equilibrate with that. The mean density of
those 1-molecules whose centers lie within V(rj, ξ, ζ) is Pj

1(r, rj,
ξ, ζ) = δ⟨∑ − ⟩ω

= r r( )1
11 , where the sum runs only over the ω1

(variable) 1-molecules in each multi-molecular configuration,
whose centers at r1 lie within V(rj, ξ, ζ), and the average is
taken over all positions rl

1 and configurations of all the 1-
molecules and those of all the 3-molecules (now excluded from
the site) in the solution. This mean density of 1-molecules in
V(rj, ξ, ζ) is further averaged over rj, ξ, and ζ by repeating this
process for various rj, ξ, and ζ and then averaging the results.
We obtain finally Pj

(1)(r) ≡ δ⟨∑ − ⟩ω
ξ ζ= r r( )j r1 , ,j

1 , where the

subscripts denote the final averages over rj, ξ, and ζ. By
definition, the average value of ω1 is ⟨ω1⟩ = ∫ vd

3rPj
(1)(r) = ν,

where ν is the average number of water molecules in the
unoccupied site. In the absence of electrostrictive effects or
large volume changes upon mixing 1 and 3, it is expected that ν
≅ v3̅/v1̅. Finally, rotational averaging of Pj

(1)(r) around the
central atom of the 2-molecule yields Pj

(1)(r), which depends
only upon the scalar distance r from that same central atom.
The normalization integral is unaffected by the rotational
averaging, so ∫ vd

3rPj
(1)(r) = ν. Finally, we note that the

contribution of the M identical sites to the pair correlation
functions is

∑=
=

c g r f P r( ) ( )
j

M

j3 32
1

(3)

(A.1a)

∑= −
=

c g r f P r( ) (1 ) ( )
j

M

j1 12
1

(1)

(A.1b)

Equation 8 can be rewritten as

∫Γ = −c r g r g r(2) d ( ( ) ( ))
R

3 3
0

3
32 12 (A.2)

where R is any large value at which g32(r) and g12(r) have
converged to 1.0. Substituting eqs 13, A.1a, and A.1b into eq
A.2 and making use of the normalization integrals yields the
exchange reaction contribution in eq 14 of the main text.

■ APPENDIX B. THERMODYNAMIC ANALYSIS OF
THE BINDING OF IONIC NA+ + OH− TO
CARBOXYLIC ACID GROUPS

The analysis here follows that in section S3 of the Supporting
Information. Although every Na+ ion is thermodynamically
bound to a negative charge, whether an OH− or PCOO−, it
may nevertheless contribute as an independent free particle to
lower the solvent chemical potential in a dilute electroneutral
solution. However, if a macromolecule, when fully charged
(titrated), is a strong polyelectrolyte, then the situation is more
complex. Such polyelectrolyte effects are ignored for the
moment but are discussed in detail in the main text. The
spontaneous reaction of the jth carboxylic acid group is

+ ⇌ +− −OH PCOOH PCOO H O2 (B1)

PCOO− is an occupied (by an OH− charge) jth binding site
denoted by Jf, and PCOOH is an unoccupied (or empty) jth
binding site denoted by Je, where J denotes the configuration of
theM − 1 other sites. The overall reaction is the exchange of an
incoming OH− for an outgoing H2O at the jth binding site. The
equilibrium constant is

= −K c X c c/J Jb
eq

1
eq eq

OHf e (B2)

where cJf and cJe are the equilibrium concentrations of,

respectively, Jf and Je, and X1
eq ≅ 1.0 is the equilibrium mole

fraction of solvent water in this dilute solution. The fraction of
(OH− charge) occupied sites is

= +− −f K c K c/(1 )b OH
eq

b OH
eq

(B3)

and is independent of either site index or configuration J of the
remaining M − 1 sites. When the jth sites of the macro-
molecules with configuration J of their M − 1 other sites
equilibrate their hydroxide binding reactions to reach
equilibrium at the prevailing hydroxide and water chemical
potentials, μOH− = μOH−

0 + kT ln cOH−
eq and μ1 = μ1

0 + kT ln X1
eq,

respectively, the changes in numbers and concentrations of the
various species are
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where cb
0 ≡ cNa+

0 = cOH−
0 . The volume of the solution is assumed

to remain constant, unaffected by the reaction. The change in
free energy at constant T and P is

μ

μ μ

μ

μ

μ μ
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(B4)

The concentrations of the Na+ ions were omitted, because
neither their numbers nor their concentrations change during
the equilibration process. The final line of eq B4 was obtained
by (1) invoking the equilibrium condition, nJ

0f{μJf
0 + μ1

0 − μJe
0 −

μOH−
0 + kT ln[cJe

eqc1
eq/cJe

eqcOH−
eq ]} = 0; (2) assuming that cJ

0 ≪ cOH−

≪ c1
0 = n1

0/V and then expanding ln[(cOH−
0 − cJ

0f)/cOH−
0 ] = ln[1−

cJ
0f/cOH−

0 ] = −cJ0f/cOH−
0 in the term containing nOH−

0 (but not nJ
0f);

and (3) assuming that cM
0 + 2cb

0 ≪ c1
0 and expanding ln[X1

eq] =
−(cP0 + 2cb

0 −cJ0f)/c10 and ln[X1
0] = −(cP0 + 2cb

0)/c1
0. We then use cX

0

= nX
0/V for any species, X, to obtain the last line of eq B4.
The final expression in eq B4 is now summed over all

configurations, J = 1 to ηJ for the particular choice of j, and then
over all sites, j = 1, ..., M, to obtain the total free energy change
associated with the binding reaction

∑ ∑Δ = − = −
η

= =

G n kT f Mn kT fln[1 ] ln[1 ]
j

M

J
J

1 1

0
P
0

J

(B5)

The free energy change per macromolecule is

∂Δ ∂ = −G n MkT f( / ) ln[1 ]T P n nP
0

, , ,1
0

NaOH
0 (B6)

which can be regarded as the contribution of the binding
reaction (eq B1) to the standard state chemical potential of the
macromolecule, μP

0. Finally, the variation of the macromolecular
chemical potential with cOH− (at equilibrium) is given by

μ∂ ∂ = ∂
∂

∂Δ
∂

= −
+

−
−

−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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c
c

G
n
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K
K c

( / )

1

T P
T P n n

P
0

OH ,
OH P

0
, , ,

b

b OH

1
0

NaOH
0

(B7)

The force on the macromolecule arising from cosolute binding
is

μ

μ

= −

= −
∂

∂
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d
d

1
d ln[ ]

d

T P

T P

b
P
0

,

P
0

OH ,

OH

b OH

b OH

OH

(B8)

Equation B8 is identical to eq A8 with cOH− in place of cL. It is
precisely what would be expected for binding a non-ionic
“molecular” NaOH cosolute ligand.
Equations B4−B8 are unaffected by the presence of other

non-ionic species whose numbers and concentrations are not
affected by the reaction, and which do not alter Kb. However, if
a partially or fully titrated form of the macromolecule is a
strong polyelectrolyte in the sense that it has a high (compared
to kT) electrostatic free energy per intrinsic charge, added
electrolyte may substantially lower its electrostatic free energy,
and thereby also its standard state chemical potential, as
described in the main text.

■ APPENDIX C. SOLUTION OF THE DIFFUSION
EQUATION

The cosolute concentration evolves from the initial profile in
Figure 2 according to the diffusion equation

∂
∂

= ∂
∂

c x t
t

D
c x t

x
( , ) ( , )2

2 (C1)

After multiplying both sides by e−st dt and integrating from 0 to
∞, the following results

− = ∂ ∂sY x s c D x Y x s( , ) ( / ) ( , )0
2 2

(C2)

which is rearranged to

∂ ∂ − = −x s D Y x s c D( / / ) ( , ) /2 2
0 (C3)

wherein

∫≡
∞

−Y x s t c x t( , ) d e ( , )st

0 (C4)

is the Laplace transform of c(x, t) and c0 is the appropriate
initial concentration.
In region A, c0 = cA and the acceptable solution of eq C3 is

= − +Y x s A s D x c s( , ) exp[ / ] /A A (C5)

In region B, c0 = cB and the solution of eq D3 is

= − + +Y x s B s D x C s D x c s( , ) exp[ / ] exp[ / ] /B B
(C6)

The quantites A, B, and C are parameters to be determined.
The conditions imposed at the zone boundary are

=c x t c x t( , ) ( , )A 0 B 0 (C7)

∂ ∂ = ∂ ∂c x t x c x t x( , )/ ( , )/A 0 B 0 (C8)

which are Laplace transformed to

=Y x s Y x s( , ) ( , )A 0 B 0 (C9)

∂ ∂ | = ∂ ∂ |Y x s x Y x s x( , )/ ( , )/x xA B0 0 (C10)
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Condition C7 (continuous concentration) prevents infinite
current density (j = −D∂c(x, t)/∂x) at x0, and eq C8
(continuous current density) prevents an infinite accumulation
(or loss) rate (∂c(x, t)/∂t = D(∂2/∂x2)c(x, t)) at x = x0. Finally,
the condition

∂ ∂ | ==c x t x( , )/ 0xB 0 (C11)

is imposed at x = 0. This zero current density condition is
required to account for the obvious symmetry of the problem,
which requires that c(−x, t) = c(x, t) and, hence also j(−x, t) =
−j(x, t), and at the same time to prevent an infinite
accumulation rate at x = 0. After Laplace transformation, eq
C11 becomes

∂ ∂ | ==Y x s x( , )/ 0xB 0 (C12)

The three conditions C9, C10, and C12 suffice to determine
the constants

= − − −A c c s(1/2)( )(e e )/s D x s D x
B A

/ /0 0 (C13)

and

= = − − −B C c c s D x s(1/2)( ) exp[ / ]/B A 0 (C14)

The following results finally

= − − −

− − + +

Y x s c c s s D x x

s D x x c s

( , ) (1/2)( )(1/ )(exp[ / ( )]

exp[ / ( )]) /
A B A 0

0 A (C15)

= − − − −

+ − + +

Y x s c c s s D x x

s D x x c s

( , ) ( 1/2)( )(1/ )(exp[ / ( )]

exp[ / ( )]) /
B B A 0

0 B (C16)

The inverse Laplace transforms are found in standard tables to
give finally

= − −

− + +

c x t c c x x Dt

x x Dt c

( , ) (( )/2)(erfc[( )/ 4 ]

erfc[( )/ 4 ])
A B A 0

0 A (C17)

= − − +

+ − +

c x t c c x x Dt

x x Dt c

( , ) (( )/2)(erfc[( )/ 4 ]

erfc[( )/ 4 ])
B B A 0

0 B (C18)

where erfc[x] is the complement of the error function. The
quantity erfc[x] = 1 − erf[x] is evaluated in standard tables for
values of the argument (x) from 0 to 3.5, at which point erfc[x]
differs from 0 by less than 1 part in 105.

■ APPENDIX D. CROSS-DIFFUSION COEFFICIENT OF
BSA AT PH 2.2

At pH 2.2, the carboxyl groups of BSA are not significantly
ionized and its net charge, +92, is almost entirely due to
protons bound to lysine, arginine, histidine, and α-amino
groups. Leaist and Hao38 studied cross-diffusion of dilute (10−4

M) BSA (component 3) in a two-component buffer consisting
of 0.1 M H3PO4 (component 1) and 0.1 M KH2PO4
(component 2) at 25 °C. The hydrogen ion concentration,
cH+ = 0.0065 (pH 2.18), is reckoned by using the equilibrium
constant, Kd = 0.0076, for the first dissociation reaction, H3PO4
⇌ H2PO4

− + H+, and ignoring the subsequent dissociations.
According to classical multicomponent diffusion theory, the
total BSA velocity in prevailing gradients of components 1 and
2 in the x-direction is

= − ∂ ∂ − ∂ ∂u D c c x D c c x( / ) / ( / ) /31 BSA 1 32 BSA 2 (D1)

where D31 and D32 are the phenomenological cross-diffusion
coefficients of BSA with components 1 and 2. Values measured
by Leaist and Hao38 were D31 = (−1.3 ± 0.5) × 10−9 and D32 =
(+4.0 ± 2.0) × 10−10 cm2/s. These values were compared with
theoretical predictions, D31 = −7.2 × 10−9 and D32 = −1.1 ×
10−8 cm2/s, obtained from classical small-ion diffusion theory,
which evidently greatly overestimates both magnitudes, and
yields the wrong sign for D32. The measured D31 and D32
should also provide useful tests of the present theory of
chemotaxis.
First, we note that the concentration of component 2 is c2 =

cK+ = csalt and that of component 1 is c1 = cH3PO4
+ cH2PO4

− − cK+ =

cH3PO4
+ cH+, after applying the electroneutrality condition,

cH2PO4
− = cH+ + cK+ = cH+ + csalt. Use of the equilibrium constant

relation, cH3PO4
= cH+cH2PO4

−/Kd, yields finally c1 = cH+(1 + (cH+ +
csalt)/Kd). After computing ∂c2/∂x and ∂c1/∂x from these
expressions for c1 and c2 and inserting those into eq D1, the
following results:

= − + +

∂ ∂ − +
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+ +
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u D c c c K c
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c c x
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When proton binding to neutral basic groups predominates, as
is the case for BSA at pH 2.2, the gradient factor in eqs 51, 59,
and 60 becomes
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where the subscripts on the slopes have been suppressed in the
last line. Inserting eq D3 into eq 59 yields
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Equating the coefficients of ∂ ln cH+/∂x and ∂ ln csalt/∂x in eqs
D2 and D4 yields two equations that can be solved to give
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The ratio
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is independent of λ and Ach. The theoretical result in eq D7 is
equated to the ratio of measured values, D32/D31 = −0.31 ±
0.19, to evaluate W = 0.59(+0.21, −0.20), where the negative
deviation is associated with D32/D31 = −0.31 − 0.19 = −0.50,
and the positive deviation is associated with D32/D31 = −0.31 +
0.19 = −0.12. Thus, W must lie in the range 0.39 ≤ W ≤ 0.80,
in order to fit the theory to the data. This in turn requires
values of the electrostatic PIC per charge group in the range
−0.40 ≤ Γ1S(P(NH

+)N) ≤ −0.30, and a similar range for
∂ΓS((PNH+)N)/∂N, where P(NH

+)N denotes the BSA with N =
92 bound protons. In order to judge whether this range is
reasonable, it is helpful to know the area per H+-binding group,
Ach, of an effective sphere model of BSA. The radius of the
effective sphere is reckoned from the reported diffusion
coefficient, D33 = 7.0 × 10−7 cm2/s, of BSA under the
prevailing conditions.38 By using R = kT/6πηD33 = 3.5 × 10−7

cm, we obtain Ach = 4πR2/92 = 167 × 10−16 cm2. The average
distance between charges, d = 2(Ach/π)

1/2 = 14.7 × 10−8 cm,
exceeds by 1.53-fold the Debye length, 1/κ = 9.6 × 10−8 cm,
under the prevailing 0.1 M ionic strength conditions. Thus,
Γ1S(P(NH

+)N) should lie significantly closer to its lower limit
of −0.5 than to its upper (NLPB) limit of 0.0. Thus, the range
(−0.40 to −0.30) of allowed values for Γ1S(P(NH

+)N), and also
for ∂ΓS((PNH+)N)/∂N, and their associated range of (0.39 to
0.80) ofW, which is needed to fit the chemotactic theory to the
measured D32/D31 ratio, seem to be quite reasonable.
Given Ach ≃ 1.67 × 10−16 cm2 and W = 0.59 (+0.21, −0.20),

the value of the slip length required to yield the measured
values of D31 and D32 is λ = 0.72 ± 0.28 Å. This value is roughly
comparable to that (λ = 0.47 Å) estimated for carboxylated
microspheres, when the W term is taken into account, as
discussed in the main text.

■ APPENDIX E. ESTIMATION OF THE VELOCITY
PROFILE

We consider a straight horizontal channel, open at the top, with
a length much greater than its width, which in turn is somewhat
greater than its depth. This channel is filled to a depth z0 = 3
mm with an aqueous solution bearing uniform gradients, d ln
cNaOH/dx and d ln cS/dx, along the channel axis (x). The
bottom surface of the channel is glass, which contains Γ silanol
groups per unit area, some of which bind NaOH to provide a
negative surface charge (due to SiO− groups) plus Na+

counterions. For simplicity, the sidewalls are assumed to be
devoid of charges or groups that bind NaOH or HCl, and are
assumed to exhibit slip boundary conditions so that the
(assumed) uniform fluid velocity along the channel, vx(z), is
independent of the horizontal y-coordinate perpendicular to the
channel axis, and depends only upon the vertical distance z
above the bottom. Taking the sidewalls into account with a no
slip or partial slip boundary condition would yield somewhat
smaller fluid velicities than those reckoned here even at the
channel center. Also, for simplicity, we consider the limit of
slow uniform fluid flow in a quasi-steady state, which could

prevail only at relatively early times before the gradient of ln
cNaOH is so perturbed that it is substantially non-uniform.
The relevant Navier−Stokes equation for such a slow

uniform flow is

η
∂

∂
= −

v z
z

F z
( )

( )x
2

2 b (E1)

where Fb(z) is the force per unit volume (body force) exerted
on the fluid by the glass bottom and η is the solution viscosity,
which is taken to be a constant equal to that of water, which is
an excellent approximation for the NaOH concentrations
(cNaOH ≤ 10−3 M) considered here.
We consider an infinitesimal patch of glass surface with area

δA = dx dy. The total force exerted on this patch by its adjacent
fluid is

δ= ΓF AkTf Gpat
(E2)

where Γ is the total number of OH− binding sites per unit area
and G is the gradient factor in eq 51. The total force exerted on
the solution by the patch, Fsol, must be equal and opposite in
sign to Fpat, hence Fsol = −Fpat. Although we do not know
precisely how Fsol is distributed over the z-dimension in the
solution, we do know that ∫ 0

z0 Fb(z)δA dz = Fsol, or equivalently
that

∫ δ
= = − ΓF z z

F
A

kTf G( ) d
z

0
b

sol
0

(E3)

In general, one can write

δ= = − ΓF z F A p z kTf Gp z( ) ( / ) ( ) ( )b
sol

(E4)

where p(z) is a normalized distribution function such that ∫ 0
z0

p(z) dz = 1.0. The value z = 0 is taken at the surface, so p(z)
admits a finite range of surface−solution interaction. For
simplicity, we choose

= − − −p z h( ) ( /(1 e ))ehz hz0 (E5)

which simply provides an integrable normalized distribution
function with a mean width, ⟨z⟩ = 1/h, when z0 is sufficiently
large that hz0 ≫ 1.0, as it is here.
After substituting eqs E4 and E5 into eq E1, both sides of E1

can be integrated from z = z0 to z. Use of the boundary
condition ∂vx(z0)/∂z = 0 (no shear at the top surface) yields

η∂ ∂ = − Γ − −− − −v z z kTf G/ ( / )(e e )/(1 e )x
hz hz hz0 0 (E6)

At z = 0, this gives

η ∂ = − Γv z kTf Gd (0)/x (E7)

which is the expected traction balance condition at the
solution−glass boundary.
A further integration of eq E6 from z = 0 to z yields

η= − Γ − −

− +

− − −

−

v z kTf G h

z v

( ) ( / )(1 e ) ((1/ )(1 e )

e ) (0)
x

hz hz

hz
x

10

0 (E8)

We consider two possible choices of vx(0).
(1) The traditional no slip boundary condition, vx(0) = 0,

yields

η= − Γ −

− −

− −

− −

v z kTf G h

hz

( ) ( / )(1 e ) (1/ )

(1 e e )
x

hz

hz hz

10

0 (E9)
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If hz0 ≫ 1.0, then

η= − Γ − −v z kTf G h( ) ( / )(1/ )(1 e )x
hz

0 (E10)

If the range of the solution−surface interaction is 1/h = 10−9

cm, as expected for OH−-binding interactions, then h = 109

cm−1. This would give hz0 = 3 × 108 for a 3 mm deep channel,
so indeed hz0 ≫ 1.0. Although non-vanishing for z ≫ 1/h, the
predicted velocities for this no slip condition are rather small, as
will be seen.
(2) The partial slip boundary condition, vx(0) = λ∂vx(0)/∂z,

where λ is the slip length, yields

η

λ

= − Γ − − −

+ −

− − − − −

−

v z kTf G h hz

h

( ) ( / )(1 e ) {1 e e

(1 e )}
x

hz hz hz

hz

1 10 0

0 (E11)

In the limit hz0 ≫ 1.0, the predicted velocity is

η λ≅ − Γ − +−v z kTf G h( ) ( / ){(1/ )(1 e ) }x
hz

(E12)

Whenever hz0 ≫ 1.0 and λ ≫ 1/h, which is the case here, the
fluid velocity profile corresponds to plug flow, except for a
narrow zone of thickness, 1/h, above the bottom surface.
Relevant slip lengths are λ = 26−57 nm for polished glass61

and λ ≤ 1.0 nm for plain pyrex and other possibly unpolished
glass.62

In order to evaluate vx, the surface density of ionized SiO−

groups, namely, Γf, is estimated following the protocol of
Behrens and Grier.59 The surface is assumed to exhibit Γ = 8 ×
1018 potentially ionizable groups per m2, typical of non-porous
fully hydrated silica. The equilibrium constant expression for
the proton dissociation reaction, SiOH ⇌ SiO− + H+, is

Γ
Γ

=
+

−
K

[H ]S SiO

SiOH
d

(E13)

where [H+]S is the proton concentration near the surface and
Kd ≃ 10−7.5. The proton concentration near the surface is
related to that ([H+]B) in the bulk solution far from the surface
by

= ψ+ + −[H ] [H ] e e k T
S B

/0 0 B (E14)

where ψ0 is the electrostatic potential at the surface and e0 = |e0|
is the protonic charge. The diffuse ion atmosphere is assumed
to be separated from the surface by a thin counterion-free Stern
layer across which the potential drops linearly from ψ0 to ψd.
The estimated phenomenological capacitance is C = σch/(ψ0 −
ψd) = 2.9 F/m2, where σch ≡ −e0ΓSiO

− is the average surface
charge density. By combining the conservation equation, Γ =
ΓSiOH + ΓSiO

−, with the above expressions for C and σch and eqs
E13 and E14, one can obtain

ψ σ σ σ

σ

= − Γ + − −

−

k T e e K

k T e C

( ) ( / ) ln[ /( )] (pH p )

ln[10]( / ) /
d ch B 0 ch 0 ch d

B 0 ch (E15)

Non-linear Poisson−Boltzmann theory yields

σ ψ εε κ ψ= k T e e k T( ) 2 ( / ) sinh[ /2 ]ch d 0 B 0 0 d B (E16)

where n is the total concentration of monovalent small ions,
which are the only kind present, ε0 = 8.85 × 10−12 F/m2 is the
dielectric susceptibility of free space, and κ2 ≡ e0

2n/(εε0kBT).
Equations E15 and E16 are readily solved for σch and ψd by
iteration for any choice of parameters. Then, Γf = Γ(ΓSiO

−/Γ) =
−σch/e0 is the desired density of surface sites with bound OH−.
Calculations were performed for two conditions of interest. (1)

For pH 10.0 NaOH, n = (2 × 10−4)(6.022 × 1023)(1000) =
1.20 × 1023 m−3, and ε = 80, the following results: κ = 3.27 ×
107 m−1, ψd = −0.217 V, σch = −0.0423 C/m2, Γf = 2.64 × 1017

charges/m2 = 2.64 × 1013 charges/cm2, and f = 0.033. (2) For
pH 9.0 NaOH, n = (2 × 10−5)(6.022 × 1023)(1000) = 1.29 ×
1022 m−3, and ε = 80, the following results: κ = 1.037 × 107

m−1, ψd = −0.2046 V, σch = −0.01063 C/m2, Γf = 6.64 × 1016

charges/m2 = 6.64 × 1012 charges/cm2, and f = 0.0083.
For a channel with a uniform gradient, d ln cNaOH/dx = −18.4

cm−1, corresponding to a decrease in cNaOH from 10−3 to 10−7

M over a distance of 0.5 cm, the force exerted on the solution
per unit area of glass surface at the point in the channel, where
the pH is 10, is reckoned via eq E2 (with W = 0) to be Fsol/δA
= −Fpat/δA = −19.7 dyn cm−2. The predicted velocity of the
fluid with the no slip boundary condition, when 1/h = 10−9 cm,
at any z ≫ 1/h is predicted to be vx(z) = −1.97 × 10−6 cm/s.
The corresponding velocity of the fluid with the partial slip
boundary condition at any z ≫ 1/h is found to be vx(z) =
−1.97 × 10−4 cm/s for λ = 1.0 nm, vx(z) = −5.1 × 10−3 cm/s
for λ = 26 nm, and vx(z) = −0.0112 cm/s for λ = 57 nm.
At a point in the channel where cNaOH = 10−5 M, the

calculated force on the solution per unit area of glass surface is
Fsol/δA = −4.94 dyn/cm2. In the no slip case with 1/h = 10−9

cm, the predicted velocity at any z ≫ 1/h is vx(z) = −4.94 ×
10−7 cm/s. In the partial slip case, the corresponding velocity at
any z ≫ 1/h is vx(z) = −4.94 × 10−5 cm/s for λ = 1 nm; vx(z)
= −1.28 × 10−3 cm/s for λ = 26 nm; and vx(z) = −2.82 ×
10−3cm/s for λ = 57 nm. The predicted velocities in the no slip
case are so small that their measurement could be challenging,
but in these relatively high pH regions of the gradient,
significant fluid velocities are predicted for partial slip,
whenever λ ≥ 1 nm.
The predicted velocities differ substantially at different x-

positions in the channel, because the fraction f of silanol groups
that are ionized by OH− binding declines with decreasing OH−

concentration. The different forces and induced velocities at
different positions in the gradient will result in fluid pile-up and
increasing fluid depth with decreasing x. Although these
predicted velocities apply only to a transient state, they
nevertheless provide useful approximate estimates, and
illustrate the importance of the slip length as an essential
determinant of the induced fluid velocity.

■ ASSOCIATED CONTENT
*S Supporting Information
Cross-diffusion theories for ionic solutions, theories of
diffusiophoresis, thermodynamic analysis of neutral cosolute
binding, approximate evaluation of Γ1S, and thermodynamic
analysis of the dissociation of the macromolecular acid groups
in the presence of H+ + Cl−. This material is available free of
charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*Phone: 206-543-6681. Fax: 206-685-8665. E-mail: schurr@
chem.washington.edu.
Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Onsager, L.; Fuoss, R. M. Irreversible Processes in Electrolytes
Diffusion, Conductance, and Viscous Flow in Arbitrary Mixtures of
Strong Electrolytes. J. Phys. Chem. 1932, 36, 2689−2778.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp302587d | J. Phys. Chem. B 2013, 117, 7626−76527650

http://pubs.acs.org
mailto:schurr@chem.washington.edu
mailto:schurr@chem.washington.edu


(2) Baldwin, R. L.; Dunlop, P. J.; Gosting, L. J. Interacting Flows in
Liquid Diffusion. Equations for Evaluation of the Diffusion
Coefficients from Moments of the Refractive Index Gradient Curves.
J. Am. Chem. Soc. 1955, 77, 5235−5238.
(3) Dunlop, P. J.; Gosting, L. J. Interacting Flows in Liquid Diffusion.
Expressions for the Solute Concentration Curves in Free Diffusion,
and Their Use in Interpreting Gouy Diffusiometer Data for Aqueous
3-Component Systems. J. Am. Chem. Soc. 1955, 77, 5238−5249.
(4) Vanag, V. K.; Epstein, I. R. Cross-Diffusion and Pattern
Formation in Reaction-Diffusion Systems. Phys. Chem. Chem. Phys.
2009, 11, 897−912.
(5) MacEwan, K.; Leaist, D. G. Quaternary Mutual Diffusion
Coefficients for Aqueous Solutions of a Cationic-Anionic Mixed
Surfactant from Moments Analysis of Taylor Dispersion Profiles. Phys.
Chem. Chem. Phys. 2003, 5, 3951−3958.
(6) Vanag, V. K.; Rossi, F.; Cherkashin, A.; Epstein, I. R. Cross-
Diffusion in a Water-in-Oil Microemulsion Loaded with Malonic Acid
or Ferroin. Taylor Dispersion Method for Four-Component Systems.
J. Phys. Chem. B 2008, 112, 9058−9070.
(7) Schurr, J. M.; Fujimoto, B. S. A Contribution to the Theory of
Preferential Interaction Coefficients. Biophys. J. 2005, 89, 2258−2276.
(8) Leaist, D. G.; Lyons, P. A. Multicomponent Diffusion in Dilute-
Solutions of Mixed Electrolytes. Aust. J. Chem. 1980, 33, 1869−1887.
(9) Leaist, D. G.; Lyons, P. A. Electrolyte Diffusion in Multi-
component Solutions. J. Phys. Chem. 1982, 86, 564−571.
(10) Rard, J. A.; Miller, D. G. Ternary Mutual Diffusion-Coefficients
of NaCl-SrCl2-H2O at 25 °C 0.1. Total Concentrations of 0.5 and 1.0
Mole dm−3. J. Phys. Chem. B 1987, 91, 4614−4620.
(11) Leaist, D. G.; Al-Dahler, F. F. Predicting the Diffusion
Coefficients of Concentrated Mixed Electrolyte Solutions from Binary
Solution Data. NaCl+MgCl2+H2O and NaCl+SrCl2+H2O at 25 °C. J.
Chem. Eng. Data 2000, 45, 308−314.
(12) Jakupi, P.; Halvorsen, H.; Leaist, D. G. A Thermodynamic
Interpretation of the “Excluded-Volume Effect” in Coupled Diffusion.
J. Phys. Chem. B 2004, 108, 7978−7985.
(13) Derjaguin, B. V.; Dukhin, S. S; Keptelova, M. M. Capillary
Osmosis through Porous Partitions and Properties of Boundary-Layers
of Solutions. J. Colloid Interface Sci. 1972, 38, 584−595.
(14) Dukhin, S. S.; Derjaguin, B. V. Electrokinetic Phenomena. In
Surface and Colloid Science; Matijevic, E., Ed; Wiley: New York, 1974;
Vol. 7, Chapter 2.
(15) Anderson, J. L.; Prieve, D. C. Diffusiophoresis Caused by
Gradients of Strongly Adsorbing Solutes. Langmuir 1991, 7, 403−406.
(16) Prieve, D. C.; Anderson, J. L.; Ebel, J. P.; Lowell, M. E. Motion
of a Particle Generated by Chemical Gradients. 2. Electrolytes. J. Fluid
Mech. 1984, 148, 247−269.
(17) Prieve, D. C.; Roman, R. Diffusiophoresis of a Rigid Sphere
through a Viscous Electrolyte Solution. J. Chem. Soc., Faraday Trans.
1987, 83, 1287−1306.
(18) Ebel, J. P.; Anderson, J. L.; Prieve, D. C. Diffusiophoresis of
Latex-Particles in Electrolyte Gradients. Langmuir 1988, 4, 396−406.
(19) Ajdari, A.; Bocquet, L. Giant Amplification of Interfacially
Driven Transport by Hydrodynamic Slip: Diffusio-Osmosis and
Beyond. Phys. Rev. Lett. 2006, 96, 186102−1- 186102−4.
(20) Anderson, J. L. Colloid Transport by Interfacial Forces. Annu.
Rev. Fluid Mech. 1989, 21, 61−99.
(21) Munson, M. S.; Cabrera, C. R.; Yager, P. Passive Electrophoresis
in Microchannels Using Liquid Junction Potentials. Electrophoresis
2002, 23, 2642−2652.
(22) Abec̀assis, B.; Cottin-Bizonne, C.; Ybert, C.; Ajdari, A.; Bocquet,
L. Boosting Migration of Large Particles by Solute Contrasts. Nat.
Mater. 2008, 7, 785−789.
(23) Zheng, J.-M.; Pollack, G. H. Long-Range Forces Extending from
Polymer-Gel Surfaces. Phys. Rev. E 2003, 68, 031408-1−031408-7.
(24) Zheng, J.-M.; Chin, W. C.; Khijniak, E.; Khijniak, E., Jr.; Pollack,
G. H. Surfaces and Interfacial Water: Evidence That Hydrophilic
Surfaces Have Long-Range Impact. Adv. Colloid Interface Sci. 2006,
127, 19−27.

(25) Zheng, J.-M.; Pollack, G. H. Solute and Potential Distribution
near Hydrophilic Surfaces. In Water and the Cell; Pollack, G. H.,
Cameron, I. L., Wheatley, D. N., Eds.; Springer: 2006; pp 165−174.
(26) Zhao, Q.; Zheng, J.-M.; Chai, B.; Pollack, G. H. Unexpected
Effect of Light on Colloidal Crystal Spacing. Langmuir 2008, 24,
1750−1755.
(27) Zheng, J.-M.; Wexler, A.; Pollack, G. H. Effect of Buffers on
Aqueous Solute-Exclusion Zones around Ion-Exchange Resins. J.
Colloid Interface Sci. 2009, 332, 511−514.
(28) Nagornyak, E.; Yoo, H.; Pollack, G. H. Mechanism of Attraction
between Like-Charged Particles in Aqueous Solution. Soft Matter
2009, 5, 3850−3857.
(29) Chai, B.; Yoo, H.; Pollack, G. H. Effect of Radiant Energy on
Near-Surface Water. J. Phys. Chem. B 2009, 113, 13953−13958.
(30) Pollack, G. H.; Figueroa, X.; Zhao, Q. Molecules, Water, and
Radiant Energy: New Clues for the Origin of Life. Int. J. Mol. Sci. 2009,
10, 1419−1429.
(31) Chai, B.; Pollack, G. H. Solute-Free Interfacial Zones in Polar
Liquids. J. Phys. Chem. B 2010, 114, 5371−5375.
(32) Chai, B.; Zheng, J.-M.; Zhao, Q.; Pollack, G. H. Spectroscopic
Studies of Solutes in Aqueous Solution. J. Phys. Chem. A 2008, 112,
2242−2247.
(33) Schurr, J. M.; McLaren, A. D. Kinetics of Trypsin Hydrolysis of
Gelatin Spheres and Structure of Both Free-Solution and Gel-State
Gelatin. Enzymologia 1965, 29, 315−368.
(34) Schurr, J. M.; McLaren, A. D. Enzyme Action. Comparison on
Soluble and Insoluble Substrate. Science 1966, 152, 1064−1066.
(35) Schantz, E. J.; Lauffer, M. A. Diffusion Measurements in Agar
Gel. Biochemistry 1962, 1, 658−663.
(36) Aragon, S.; Hahn, D. Precise Boundary Element Computation
of Protein Transport Properties: Diffusion Tensors, Specific Volume,
and Hydration. Biophys. J. 2006, 91, 1591−1603.
(37) Schurr, J. M. Phenomena Associated with Gel−Water Interfaces.
Analyses and Alternatives to the Long-Range Ordered Water
Hypothesis. J. Phys. Chem. B 2013, DOI: 10.1021/jp302589y.
(38) Leaist, D. G.; Hao, L. Diffusion in Buffered Protein Solutions.
Combined Nernst-Planck and Multicomponent Fick Equations. J.
Chem. Soc., Faraday Soc. 1993, 89, 2775−2782.
(39) Schurr, J. M. Dynamic Light Scattering and Mutual Diffusion in
Non-Ideal Systems. One-Component and Multicomponent Spherical
Solutes. Chem. Phys. 1987, 111, 55−86.
(40) Allison, S. A.; Chang, E. L.; Schurr, J. M. Effects of Direct and
Hydrodynamic Forces on Macromolecular Diffusion. Chem. Phys.
1979, 38, 29−41.
(41) Brenner, H. The Slow Motion of a Sphere through a Viscous
Fluid towards a Plane Surface. Chem. Eng. Sci. 1961, 16, 242−251.
(42) Rushton, E.; Davies, G. Slow Unsteady Settling of Two Fluid
Spheres along Their Line of Centers. Appl. Sci. Res. 1973, 28, 37−61.
(43) Batchelor, G. K. Sedimentation in a Dilute Dispersion of
Spheres. J. Fluid Mech. 1972, 52, 245−268.
(44) Wolynes, P. G.; Deutch, J. M. Slip Boundary Conditions and
Hydrodynamic Effect on Diffusion-Controlled Reactions. J. Chem.
Phys. 1976, 65, 450−454.
(45) Honig, E. P.; Roeberson, G. J.; Wiersema, P. H. Effect of
Hydrodynamic Interaction on Coagulation Rate of Hydrophobic
Colloids. J. Colloid Interface Sci. 1971, 36, 97−109.
(46) Kirkwood, J. G.; Buff, F. P. The Statistical Mechanical Theory of
Solutions.1. J. Chem. Phys. 1951, 19, 774−777.
(47) Ben-Naim, A. Solute and Solvent Effects on Chemical Equilibria.
J. Chem. Phys. 1975, 63, 2064−2073.
(48) Ben-Naim, A. Theory of Preferential Solvation of Non-
electrolytes. Cell Biophys. 1988, 12, 255−269.
(49) Ben-Naim, A. Statistical Thermodynamics for Chemists and
Biochemists; Plenum Press: New York, 1992.
(50) Chitra, R.; Smith, P. E. Preferential Interactions of Cosolvents
with Hydrophobic Solutes. J. Phys. Chem. B 2001, 105, 11513−11532.
(51) Smith, P. E. Cosolvent Interactions with Biomolecules: Relating
Computer Simulation Data to Experimental Thermodynamic Data. J.
Phys. Chem. B 2004, 108, 18716−18724.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp302587d | J. Phys. Chem. B 2013, 117, 7626−76527651



(52) Smith, P. E. Equilibrium Dialysis Data and the Relationships
between Preferential Interaction Parameters for Biological Systems in
Terms of Kirkwood-Buff Integrals. J. Phys. Chem. B 2006, 110, 2862−
2868.
(53) Smith, P. E. Chemical Potential Derivatives and Preferential
Interaction Parameters in Biological Systems from Kirkwood-Buff
Theory. Biophys. J. 2006, 91, 849−856.
(54) Batchelor, G. K. Brownian Diffusion of Particles with
Hydrodynamic Interaction. J. Fluid Mech. 1976, 74, 1−29.
(55) Schurr, J. M. Polyanion Models of Nucleic Acid-Metal Ion
Interactions. In Nucleic Acid-Metal Interactions; Hud, N. V., Ed.; RSC
Publishing: Cambridge, U.K., 2009; Chapter 9, pp 308−349.
(56) Sharp, K. A.; Honig, B. Calculating Total Electrostatic Energies
with the Nonlinear Poisson-Boltzmann Equation. J. Phys. Chem. B
1990, 94, 7684−7692.
(57) Sharp, K. A. Polyelectrolyte Electrostatics. Salt Dependence,
Entropic, and Enthalpic Contributions to Free Energy in the
Nonlinear Poisson-Boltzmann Model. Biopolymers 1995, 36, 227−244.
(58) Sharp, K. A.; Friedman, R.; Misra, V.; Hecht, J.; Honig, B. Salt
Effects on Polyelectrolyte-Ligand Binding. Comparison of Poisson-
Boltzmann and Limiting Law Counterion Binding Models. Biopolymers
1995, 36, 245−262.
(59) Behrens, S. V.; Grier, D. G. The Charge of Glass and Silica
Surfaces. J. Chem. Phys. 2001, 115, 6716−6721.
(60) Maier, H. Electrorotation of Colloidal Particles and Cells
Depends on Surface Charge. Biophys. J. 1977, 73, 1617−1626.
(61) Huang, P.; Guasto, J. S.; Breuer, K. S. Direct Measurement of
Slip Velocities Using Three-Dimensional Total Internal Reflection
Velocimetry. J. Fluid Mech. 2006, 566, 447−464.
(62) Bouziques, C. I.; Bocquet, L.; Charlais, E.; Cottin-Bizonne, C.;
Cross, B.; July, L.; Steinberger, A.; Ybert, C.; Tabeling, P. Using
Surface Force Apparatus, Diffusion and Velocimetry to Measure Slip
Lengths. Philos. Trans. R. Soc., A 2008, 366, 1455−1468.
(63) Sha, Y.; Chen, H.; Yin, Y.; Tu, S.; Ye, L.; Zheng, Y.
Characteristics of the Marangoni Convection Induced in Initial
Quiescent Water. Ind. Eng. Chem. Res. 2010, 49, 8770−8777.
(64) Jungwirth, P.; Tobias, D. J. Specific Ion Effects at the Air/Water
Interface. Chem. Rev. 2006, 106, 1259−1281.
(65) Darrington, I. M.; Butler, T. Z.; Collins, M. D.; Manrao, E.;
Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Nanopore DNA
Sequencing with MspA. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 16060−
16065.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp302587d | J. Phys. Chem. B 2013, 117, 7626−76527652


